13 research outputs found

    Correction to: Ten years malaria trend at Arjo-Didessa sugar development site and its vicinity, Southwest Ethiopia: a retrospective study.

    Get PDF
    Following publication of the original article [1], it came to the authors' attention that unfortunately the last name of one of the authors is spelled incorrectly in the published article

    Susceptibility of primary, secondary and suspected vectors to Plasmodium vivax and Plasmodium falciparum infection in Ethiopia

    No full text
    BackgroundInsecticide-based vector control interventions in combination with case management with artemisinin-based combination therapy has reduced malaria incidence and prevalence worldwide. Current control methods focus on the primary malaria vectors, Anopheles gambiae sensu lato (s.l.) and the An. funestus group; however, the impact of secondary and suspected vectors has been either sidelined or received limited attention. Defining the susceptibility of secondary, suspected vector species to different parasites in time and space is essential for efficient malaria control and elimination programs. The aim of this study was to assess the susceptibility of An. gambiae s.l., An. coustani complex and An. pharoensis to Plasmodium vivax and P. falciparum infection in Ethiopia.MethodsLarvae of Anopheles spp. were collected from different aquatic habitats and reared to adults under laboratory conditions, with the temperature and humidity maintained at 27 ± 1 °C and 75 ± 5%, respectively. Adult female mosquitoes were identified to species as An. gambiae s.l., An. coustani complex and An. pharoensis. Females of these three Anopheles spp. were allowed to feed in parallel feeding assays on infected blood containing the same gametocytes isolated from P. falciparum and P. vivax gametocyte-positive patients by indirect membrane feeding assays. All blood-fed mosquitoes were held under laboratory conditions. After 7 days, all surviving mosquitoes were dissected to detect mid-gut oocyst and enumerated under a microscope.ResultsOf 5915 female Anopheles mosquitoes exposed to gametocyte-infected blood, 2106 (35.6%)s fed successfully in the 32 independent infection experiments. There was a significant variation in feeding rates among An. gambiae s.l., An. pharoensis and An. coustani complex (G-test = 48.43, P = 3.049e-11). All three exposed mosquito species were receptive to P. vivax and P. falciparum infection development. The percentage of infected mosquitoes following feeding on an infected blood meal was significantly different among species (G-test = 6.49, P = 0.03886). The median infection intensity (II) for An. coustani complex, An. gambiae s.l. and An. pharoensis was 1.16, 2.00 and 1.25, respectively. Although the proportion of infected mosquitoes significantly differed in terms of II, infection rate (IR) and mean oocyst density among the species, mean oocyst density and IR were highly correlated with gametocyte density in all tests (P < 0.001).ConclusionPrimary, secondary and suspected vectors were experimentally susceptible to both P. vivax and P. falciparum infection. An effective malaria elimination program might include surveillance and control tools which target secondary and suspected vectors that might play an outdoor transmission role, possibly resulting in reduced focal malaria transmission. Comparison of the three species' mean infection rates with standard deviation

    Ten years malaria trend at Arjo-Didessa sugar development site and its vicinity, Southwest Ethiopia: a retrospective study.

    Get PDF
    BackgroundThe trend analysis of malaria data from health facilities is useful for understanding dynamics of malaria epidemiology and inform for future malaria control planning. Changes in clinical malaria characteristics, like gender and age distribution are good indicators of declining malaria transmission. This study was conducted to determine the malaria trend at Arjo-Didessa sugar development site and its vicinity, southwest Ethiopia, from 2008 to 2017.MethodsMonthly malaria confirmed case data from 2008 to 2017 was extracted from 11 health facilities based on clinical registers at Arjo sugar development site and its vicinity, southwest Ethiopia. Both positivity rate and malaria incidence rate were calculated. Changes in malaria parasite species and seasonality were analysed; age structure and gender distribution were compared between different study periods. Trend in malaria incidence and climatic impact were analysed and past LLIN and IRS campaigns were used as dynamics modifier.ResultsOver a period of 10 years, 54,020 blood film were collected for malaria diagnosis in the health facilities at the area, of which 18,049 (33.4%) were confirmed malaria cases by both microscopically and RDT. Plasmodium falciparum, Plasmodium vivax, and mixed infection (P. falciparum and P. vivax) accounted for 8660 (48%), 7649 (42.4%), and 1740 (9.6%) of the malaria cases, respectively. The study also revealed that P. vivax was the predominant over P. falciparum for 4 years (2010, 2014, 2015 and 2016). There was a remarkable reduction of overall malaria infection during the 10 years. Malaria has been reported in all age groups, but age distribution showed that vast majority of cases were adults age 15 years and above 13,305 (73.7%). In all age groups, males were more significantly affected than females (χ2 = 133.0, df = 2, P < 0.0001). Moreover, malaria positivity rate showed a strong seasonality (χ2 = 777.55, df = 11, P < 0.0001). However, malaria cases were reported in all seasons across 10 years in the study area.ConclusionIn general, malaria positivity showed a declining trend over 10 years period in the area. However, current prevalence shows it is public health burden and needs attention for further intensification of interventions. In the study area, both P. falciparum and P. vivax co-exist and P. vivax is more prevalent than P. falciparum in almost half of the years. Therefore, malaria interventions should be strengthened in the study area

    Investigating the Impact of Irrigation on Malaria Vector Larval Habitats and Transmission Using a Hydrology‐Based Model

    No full text
    Abstract A combination of accelerated population growth and severe droughts has created pressure on food security and driven the development of irrigation schemes across sub‐Saharan Africa. Irrigation has been associated with increased malaria risk, but risk prediction remains difficult due to the heterogeneity of irrigation and the environment. While investigating transmission dynamics is helpful, malaria models cannot be applied directly in irrigated regions as they typically rely only on rainfall as a source of water to quantify larval habitats. By coupling a hydrologic model with an agent‐based malaria model for a sugarcane plantation site in Arjo, Ethiopia, we demonstrated how incorporating hydrologic processes to estimate larval habitats can affect malaria transmission. Using the coupled model, we then examined the impact of an existing irrigation scheme on malaria transmission dynamics. The inclusion of hydrologic processes increased the variability of larval habitat area by around two‐fold and resulted in reduction in malaria transmission by 60%. In addition, irrigation increased all habitat types in the dry season by up to 7.4 times. It converted temporary and semi‐permanent habitats to permanent habitats during the rainy season, which grew by about 24%. Consequently, malaria transmission was sustained all‐year round and intensified during the main transmission season, with the peak shifted forward by around 1 month. Lastly, we evaluated the spatiotemporal distribution of adult vectors under the effect of irrigation by resolving habitat heterogeneity. These findings could help larval source management by identifying transmission hotspots and prioritizing resources for malaria elimination planning

    Evidence of pyrethroid resistance in Anopheles amharicus and Anopheles arabiensis from Arjo-Didessa irrigation scheme, Ethiopia.

    No full text
    BackgroundIndoor residual spraying and insecticide-treated nets are among the key malaria control intervention tools. However, their efficacy is declining due to the development and spread of insecticide resistant vectors. In Ethiopia, several studies reported resistance of An. arabiensis to multiple insecticide classes. However, such data is scarce in irrigated areas of the country where insecticides, pesticides and herbicides are intensively used. Susceptibility of An. gambiae s.l. to existing and new insecticides and resistance mechanisms were assessed in Arjo-Didessa sugarcane plantation area, southwestern Ethiopia.MethodsAdult An. gambiae s.l. reared from larval/pupal collections of Arjo-Didessa sugarcane irrigation area and its surrounding were tested for their susceptibility to selected insecticides. Randomly selected An. gambiae s.l. (dead and survived) samples were identified to species using species-specific polymerase chain reaction (PCR) and were further analyzed for the presence of knockdown resistance (kdr) alleles using allele-specific PCR.ResultsAmong the 214 An. gambiae s.l. samples analyzed by PCR, 89% (n = 190) were An. amharicus and 9% (n = 20) were An. arabiensis. Mortality rates of the An. gambiae s.l. exposed to deltamethrin and alphacypermethrin were 85% and 86.8%, respectively. On the other hand, mortalities against pirmiphos-methyl, bendiocarb, propoxur and clothianidin were 100%, 99%, 100% and 100%, respectively. Of those sub-samples (An. amharicus and An. arabiensis) examined for presence of kdr gene, none of them were found to carry the L1014F (West African) allelic mutation.ConclusionAnopheles amharicus and An. arabiensis from Arjo-Didessa sugarcane irrigation area were resistant to pyrethroids which might be synergized by extensive use of agricultural chemicals. Occurrence of pyrethroid resistant malaria vectors could challenge the ongoing malaria control and elimination program in the area unless resistance management strategies are implemented. Given the resistance of An. amharicus to pyrethroids, its behavior and vectorial capacity should be further investigated

    Higher outdoor mosquito density and Plasmodium infection rates in and around malaria index case households in low transmission settings of Ethiopia: Implications for vector control

    No full text
    Abstract Background Understanding the clustering of infections for persistent malaria transmission is critical to determining how and where to target specific interventions. This study aimed to determine the density, blood meal sources and malaria transmission risk of anopheline vectors by targeting malaria index cases, their neighboring households and control villages in Arjo-Didessa, southwestern Ethiopia. Methods An entomological study was conducted concurrently with a reactive case detection (RCD) study from November 2019 to October 2021 in Arjo Didessa and the surrounding vicinity, southwestern Ethiopia. Anopheline mosquitoes were collected indoors and outdoors in index case households and their surrounding households (neighboring households), as well as in control households, using pyrethrum spray cache (PSC) and U.S. Centers for Disease Control and Prevention (CDC) light traps. Adult mosquitoes were morphologically identified, and speciation in the Anopheles gambiae complex was done by PCR. Mosquito Plasmodium infections and host blood meal sources were detected by circumsporozoite protein enzyme-linked immunosorbent assay (CSP-ELISA) and cytochrome b-based blood meal PCR, respectively. Results Among the 770 anopheline mosquitoes collected, An. gambiae sensu lato (A. gambiae s.l.) was the predominant species, accounting for 87.1% (n = 671/770) of the catch, followed by the Anopheles coustani complex and Anopheles pharoensis, which accounted for 12.6% (n = 97/770) and 0.26% (n = 2/770) of the catch, respectively. From the sub-samples of An. gambiae s.l.analyzed with PCR, An. arabiensis and Anopheles amharicus were identified. The overall mean density of mosquitoes was 1.26 mosquitoes per trap per night using the CDC light traps. Outdoor mosquito density was significantly higher than indoor mosquito density in the index and neighboring households (P = 0.0001). The human blood index (HBI) and bovine blood index (BBI) of An. arabiensis were 20.8% (n = 34/168) and 24.0% (n = 41/168), respectively. The overall Plasmodium sporozoite infection rate of anophelines (An. arabiensis and An. coustani complex) was 4.4% (n = 34/770). Sporozoites were detected indoors and outdoors in captured anopheline mosquitoes. Of these CSP-positive species for Pv-210, Pv-247 and Pf, 41.1% (n = 14/34) were captured outdoors. A significantly higher proportion of sporozoite-infected mosquitoes were caught in index case households (5.6%, n = 8/141) compared to control households (1.1%, n = 2/181) (P = 0.02), and in neighboring households (5.3%, n = 24/448) compared to control households (P = 0.01). Conclusions The findings of this study indicated that malaria index cases and their neighboring households had higher outdoor mosquito densities and Plasmodium infection rates. The study also highlighted a relatively higher outdoor mosquito density, which could increase the potential risk of outdoor malaria transmission and may play a role in residual malaria transmission. Thus, it is important to strengthen the implementation of vector control interventions, such as targeted indoor residual spraying, long-lasting insecticidal nets and other supplementary vector control measures such as larval source management and community engagement approaches. Furthermore, in low transmission settings, such as the Arjo Didessa Sugarcane Plantation, providing health education to local communities, enhanced environmental management and entomological surveillance, along with case detection and management by targeting of malaria index cases and their immediate neighboring households, could be important measures to control residual malaria transmission and achieve the targeted elimination goals. Graphical Abstrac
    corecore