52 research outputs found

    Molecular insights into the premature aging disease progeria

    Get PDF

    Design of self-immolative linkers for tumour-activated prodrug therapy

    No full text
    The main drawback of most cancer chemotherapy is its relatively low ability to target tumour cells versus normal cells. As a consequence, chemotherapy is usually connected with severe side effects due to the toxicity of traditional cytostatic agents towards normal tissues. A few years ago, the site-specific activation of non-toxic prodrugs in tumours has been proposed in order to enhance the selectivity for the killing of cancer cells. Within this framework, most of the prodrugs that have been designed were three part compounds comprising trigger, linker and effector units. The main function of the linker is to release the effector unit after selective trigger activation via a spontaneous chemical breakdown. However, its structure also affects significantly many prodrug properties such as stability, pharmacokinetic, organ distribution, bioavailability or trigger activation. This review, focussed on the linker unit, is an update of our previous article published in 2002. It deals with recent advances in the design of prodrug linkers including new delivery systems such as elongated linkers or self-immolative dendrimers

    Design of self-immolative linkers for tumour-activated prodrug therapy

    No full text
    The main drawback of most cancer chemotherapy is its relatively low ability to target tumour cells versus normal cells. As a consequence, chemotherapy is usually connected with severe side effects due to the toxicity of traditional cytostatic agents towards normal tissues. A few years ago, the site-specific activation of non-toxic prodrugs in tumours has been proposed in order to enhance the selectivity for the killing of cancer cells. Within this framework, most of the prodrugs that have been designed were three part compounds comprising trigger, linker and effector units. The main function of the linker is to release the effector unit after selective trigger activation via a spontaneous chemical breakdown. However, its structure also affects significantly many prodrug properties such as stability, pharmacokinetic, organ distribution, bioavailability or trigger activation. This review, focussed on the linker unit, is an update of our previous article published in 2002. It deals with recent advances in the design of prodrug linkers including new delivery systems such as elongated linkers or selfimmolative dendrimers

    Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-kappa B signaling pathway

    No full text
    Cutaneous melanoma is one of the most aggressive cancers characterized by a high plasticity, a propensity for metastasis, and drug resistance. Melanomas are composed of phenotypically diverse subpopulations of tumor cells with heterogeneous molecular profiles that reflect intrinsic invasive abilities. In an attempt to identify novel factors of the melanoma invasive cell state, we previously investigated the nature of the invasive secretome by using a comparative proteomic approach. Here, we have extended this analysis to show that PTX3, an acute phase inflammatory glycoprotein, is one such factor secreted by invasive melanoma to promote tumor cell invasiveness. Elevated PTX3 production was observed in the population of MITFlow invasive cells but not in the population of MITFhigh differentiated melanoma cells. Consistently, MITF knockdown increased PTX3 expression in MITFhigh proliferative and poorly invasive cells. High levels of PTX3 were found in tissues and blood of metastatic melanoma patients, and in BRAF inhibitor-resistant melanoma cells displaying a mesenchymal invasive MITFlow phenotype. Genetic silencing of PTX3 in invasive melanoma cells dramatically impaired migration and invasion in vitro and in experimental lung extravasation assay in xenografted mice. In contrast, addition of melanoma-derived or recombinant PTX3, or expression of PTX3 enhanced motility of low migratory cells. Mechanistically, autocrine production of PTX3 by melanoma cells triggered an IKIC/NF kappa B signaling pathway that promotes migration, invasion, and expression of the EMT factor TWIST1. Finally, we found that TLR4 and MYD88 knockdown inhibited PTX3-induced melanoma cell migration, suggesting that PTX3 functions through a TLR4-dependent pathway. Our work reveals that tumor-derived PTX3 contributes to melanoma cell invasion via targetable inflammation-related pathways. In addition to providing new insights into the biology of melanoma invasive behavior, this study underscores the notion that secreted PTX3 represents a potential biomarker and therapeutic target in a subpopulation of MITFlow invasive and/or refractory melanoma
    • …
    corecore