24 research outputs found

    Genome-Wide Transcriptional Analysis Reveals the Protection against Hypoxia-Induced Oxidative Injury in the Intestine of Tibetans via the Inhibition of GRB2/EGFR/PTPN11 Pathways

    No full text
    The molecular mechanisms for hypoxic environment causing the injury of intestinal mucosal barrier (IMB) are widely unknown. To address the issue, Han Chinese from 100 m altitude and Tibetans from high altitude (more than 3650 m) were recruited. Histological and transcriptome analyses were performed. The results showed intestinal villi were reduced and appeared irregular, and glandular epithelium was destroyed in the IMB of Tibetans when compared with Han Chinese. Transcriptome analysis revealed 2573 genes with altered expression. The levels of 1137 genes increased and 1436 genes decreased in Tibetans when compared with Han Chinese. Gene ontology (GO) analysis indicated most immunological responses were reduced in the IMB of Tibetans when compared with Han Chinese. Gene microarray showed that there were 25-, 22-, and 18-fold downregulation for growth factor receptor-bound protein 2 (GRB2), epidermal growth factor receptor (EGFR), and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11) in the IMB of Tibetans when compared with Han Chinese. The downregulation of EGFR, GRB2, and PTPN11 will reduce the production of reactive oxygen species and protect against oxidative stress-induced injury for intestine. Thus, the transcriptome analysis showed the protecting functions of IMB patients against hypoxia-induced oxidative injury in the intestine of Tibetans via affecting GRB2/EGFR/PTPN11 pathways

    Predictive model for estimating the risk of high-altitude pulmonary edema: a single-centre retrospective outcome-reporting study

    No full text
    Objective To develop the first prediction model based on the common clinical symptoms of high-altitude pulmonary edema (HAPE), enabling early identification and an easy-to-execute self-risk prediction tool.Methods A total of 614 patients who consulted People’s Hospital of Tibet Autonomous Region between January 2014 and April 2022 were enrolled. Out of those, 508 patients (416 males and 92 females) were diagnosed with HAPE and 106 were patients without HAPE (33 females and 72 males). They were randomly distributed into training (n=431) and validation (n=182) groups. Univariate and multivariate analysis were used to screen predictors of HAPE selected from the 36 predictors; nomograms were established based on the results of multivariate analysis. The receiver operating characteristic curve (ROC) was developed to obtain the area under the ROC curve (AUC) of the predictive model, and its predictive power was further evaluated by calibrating the curve, while the Decision Curve Analysis (DCA) was developed to evaluate the clinical applicability of the model, which was visualised by nomogram.Results All six predictors were significantly associated with the incidence of HAPE, and two models were classified according to whether the value of SpO2 (percentage of oxygen in the blood) was available in the target population. Both could accurately predict the risk of HAPE. In the validation cohort, the AUC of model 1 was 0.934 with 95% CI (0.848 to 1.000), and model 2 had an AUC of 0.889, 95% CI (0.779 to 0.999). Calibration plots showed that the predicted and actual HAPE probabilities fitted well with internal validation, and the clinical decision curve shows intervention in the risk range of 0.01–0.98, resulting in a net benefit of nearly 99%.Conclusion The recommended prediction model (nomogram) could estimate the risk of HAPE with good precision, high discrimination and possible clinical applications for patients with HAPE. More importantly, it is an easy-to-execute scoring tool for individuals without medical professionals’ support

    Transcriptome Reveals 1400-Fold Upregulation of APOA4-APOC3 and 1100-Fold Downregulation of GIF in the Patients with Polycythemia-Induced Gastric Injury.

    No full text
    High-altitude polycythemia (HAPC) inducing gastric mucosal lesion (GML) is still out of control and molecular mechanisms remain widely unknown. To address the issues, endoscopy and histopathological analyses were performed. Meanwhile, microarray-based transcriptome profiling was conducted in the gastric mucosa from 3 pairs of healthy subjects and HAPC-induced GML patients. HAPC caused morphological changes and pathological damages of the gastric mucosa of GML patients. A total of 10304 differentially expressed genes (DEGs) were identified, including 4941 up-regulated and 5363 down-regulated DEGs in gastric mucosa of GML patients compared with healthy controls (fold change ≥2, P<0.01 and FDR <0.01). Particularly, apolipoprotein genes APOA4 and APOC3 were 1473-fold and 1468-fold up-regulated in GML patients compared with the controls. In contrast, gastric intrinsic factor (GIF) was 1102-fold down-regulated in GML patients compared with the controls. APOA4 (chr11:116691770-116691711), APOC3 (chr11:116703530-116703589) and GIF (chr11:59603362-59603303) genes are all located on chromosome 11. APOA4 and APOC3 act as an inhibitor of gastric acid secretion while gastric acid promotes ulceration. GIF deficiency activates a program of acute anemia, which may antagonize polycythemia while polycythemia raises the risk of GML. Therefore, the present findings reveal that HAPC-induced GML inspires the protection responses by up-regulating APOA4 and APOC3, and down-regulating GIF. These results may offer the basic information for the treatment of HAPC-induced gastric lesion in the future

    Highly TOP down-regulated genes in GML patients in comparison with controls.

    No full text
    <p>Highly TOP down-regulated genes in GML patients in comparison with controls.</p

    Gene ontology (GO) analysis used for analysis of the altered genes.

    No full text
    <p>A, The bar plot showed the top ten up-regulated Enrichment Score values of the significant enrichment; B, The bar plot showed the top ten down-regulated Enrichment Score values of the significant enrichment BP.</p

    Pathway analysis of DEG.

    No full text
    <p>A: The bar plot showed the top ten up-regulated Enrichment Score values of the significant enrichment pathway; B: The bar plot showed the top ten down-regulated Enrichment Score value of the significant enrichment pathway.</p

    Validating microarray results using qRT-PCR.

    No full text
    <p>A, the top-4 up-regulated DEGs. B, the top-4 down-regulated DEGs. The results represented quantification of mRNA levels relative to β-actin. Normalized expression values were obtained by qRT-PCR (n = 3). C = Controls, P = GML patients.</p

    Histopathological examination of gastric mucosa sections.

    No full text
    <p>A, Hematoxylin-eosin stained results showed appearance of the gastric mucosa in antrum region of the control group and HAPC-induced GML group (× 40 and × 400); B, The gastric mucosal damage score in control and HAPC-induced GML group. The mean scores were significantly higher in the HAPC-induced GML group when compared with a control group (P < 0.01, n = 3 per group).</p

    Comparative Analysis of Gut Microbiota of Native Tibetan and Han Populations Living at Different Altitudes

    No full text
    <div><p>The factors driving the composition of gut microbiota are still only partly understood but appear to include environmental, cultural, and genetic factors. In order to obtain more insight into the relative importance of these factors, we analyzed the microbiome composition in subjects of Tibetan or Han descent living at different altitudes. DNA was isolated from stool samples. Using polymerase chain reaction methodology, the 16S rRNA V1–V3 regions were amplified and the sequence information was analyzed by principal coordinates analysis and Lefse analyses. Contrasting the Tibetan and Han populations both living at the 3600 m altitude, we found that the Tibetan microbiome is characterized by a relative abundance of <i>Prevotella</i> whereas the Han stool was enriched <i>in Bacteroides</i>. Comparing the microbiome of Han stool obtained from populations living at different altitudes revealed a more energy efficient flora in samples from those living at higher altitude relative to their lower-altitude counterparts. Comparison of the stool microbiome of Tibetan herders living at 4800 m to rural Tibetans living at 3600 m altitude shows that the former have a flora enriched in butyrate-producing bacteria, possibly in response to the harsher environment that these herders face. Thus, the study shows that both altitude and genetic/cultural background have a significant influence on microbiome composition, and it represents the first attempt to compare stool microbiota of Tibetan and Han populations in relation to altitude.</p></div
    corecore