70 research outputs found
MLC1 is associated with the Dystrophin-Glycoprotein Complex at astrocytic endfeet
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a progressive cerebral white matter disease with onset in childhood, caused by mutations in the MLC1 gene. MLC1 is a protein with unknown function that is mainly expressed in the brain in astrocytic endfeet at the blood–brain and cerebrospinal fluid–brain barriers. It shares its localization at astrocytic endfeet with the dystrophin-associated glycoprotein complex (DGC). The objective of the present study was to investigate the possible association of MLC1 with the DGC. To test this hypothesis, (co)-localization of DGC-proteins and MLC1 was analyzed by immunohistochemical stainings in gliotic brain tissue from a patient with multiple sclerosis, in glioblastoma tissue and in brain tissue from an MLC patient. In control tissue, a direct protein interaction was tested by immunoprecipitation. Results revealed that MLC1 is co-localized with DGC-proteins in gliotic brain tissue. We demonstrated that both MLC1 and aquaporin-4, a member of the DGC, were redistributed in glioblastoma cells. In MLC brain tissue, we showed absence of MLC1 and altered expression of several DGC-proteins. We demonstrated a direct protein interaction between MLC1 and Kir4.1. From these results we conclude that MLC1 is associated with the DGC at astrocytic endfeet
Two cases with megalencephalic leukoencephalopathy with subcortical cysts and MLC1 mutations in the Turkish population
Megalencephalic leukoencephalopathy with subcortical cysts is a rare leukodystrophy that is characterized by macrocephaly and a slowly progressive clinical course. It is one of the most commonly reported leukoencephalopathies in Turkey. Mutations in the MLC1 gene are the main cause of the disease. We report two patients with megalencephalic leukoencephalopathy with subcortical cysts with confirmed mutations in the MLC1 gene. The mutation in the second patient was novel. We also review identified mutations in the Turkish population
Basepairing with 18S ribosomal RNA in internal initiation of translation
AbstractIn concert with the translation initiation factors ‘trans-acting’ factors function specifically during internal initiation on picornaviral mRNAs. Of these trans-acting factors, two have been identified as the La-protein and the polypyrimidine tract binding protein. Within the internal ribosomal entry site on the viral RNA, sequences are present that direct the ribosome to the initiation codon. We suggest that selection of the correct AUG initiation codon occurs through basepairing with a part of 18S ribosomal RNA
Vanishing white matter disease
Vanishing white matter disease (VWM) is one of the most prevalent inherited childhood leucoencephalopathies. The classical phenotype is characterised by early childhood onset of chronic neurological deterioration, dominated by cerebellar ataxia. VWM is unusual because of its clinically evident sensitivity to febrile infections, minor head trauma, and acute fright, which may cause rapid neurological deterioration and unexplained coma. Most patients die a few years after onset. The phenotypic variation is extremely wide, including antenatal onset and early demise and adult-onset, slowly progressive disease. MRI findings are diagnostic in almost all patients and are indicative of vanishing of the cerebral white matter. The basic defect of this striking disease resides in either one of the five subunits of eukaryotic translation initiation factor eIF2B. eIF2B is essential in all cells of the body for protein synthesis and its regulation under different stress conditions. Although the defect is in housekeeping genes, oligodendrocytes and astrocytes are predominantly affected, whereas other cell types are surprisingly spared. Recently, undue activation of the unfolded-protein response has emerged as important in the pathophysiology of VWM, but the selective vulnerability of glia for defects in eIF2B is poorly understood
Defective translation initiation causes vanishing of cerebral white matter
Leukoencephalopathy with vanishing white matter (VWM) is one of the most prevalent inherited white-matter disorders, especially in Caucasian populations. VWM is unusual because of its sensitivity to febrile infections and minor head trauma. The basic defect of this enigmatic brain disease resides in the regulation of initiation of protein synthesis. Recently, undue activation of the unfolded-protein response has emerged as an important factor in the pathophysiology of VWM. Here, we discuss the mechanisms that might be responsible for the selective involvement of the brain white matter in VWM. At present, VWM research is in need of an animal model to study disease mechanisms and therapeutic interventions
- …
