126 research outputs found

    High-risk human papillomavirus (HPV) screening and detection in healthy patient saliva samples: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human papillomaviruses (HPV) are a large family of non-enveloped DNA viruses, mainly associated with cervical cancers. Recent epidemiologic evidence has suggested that HPV may be an independent risk factor for oropharyngeal cancers. Evidence now suggests HPV may modulate the malignancy process in some tobacco- and alcohol-induced oropharynx tumors, but might also be the primary oncogenic factor for inducing carcinogenesis among some non-smokers. More evidence, however, is needed regarding oral HPV prevalence among healthy adults to estimate risk. The goal of this study was to perform an HPV screening of normal healthy adults to assess oral HPV prevalence.</p> <p>Methods</p> <p>Healthy adult patients at a US dental school were selected to participate in this pilot study. DNA was isolated from saliva samples and screened for high-risk HPV strains HPV16 and HPV18 and further processed using qPCR for quantification and to confirm analytical sensitivity and specificity.</p> <p>Results</p> <p>Chi-square analysis revealed the patient sample was representative of the general clinic population with respect to gender, race and age (<it>p </it>< 0.05). Four patient samples were found to harbor HPV16 DNA, representing 2.6% of the total (n = 151). Three of the four HPV16-positive samples were from patients under 65 years of age and all four were female and Hispanic (non-White). No samples tested positive for HPV18.</p> <p>Conclusions</p> <p>The successful recruitment and screening of healthy adult patients revealed HPV16, but not HPV18, was present in a small subset. These results provide new information about oral HPV status, which may help to contextualize results from other studies that demonstrate oral cancer rates have risen in the US among both females and minorities and in some geographic areas that are not solely explained by rates of tobacco and alcohol use. The results of this study may be of significant value to further our understanding of oral health and disease risk, as well as to help design future studies exploring the role of other factors that influence oral HPV exposure, as well as the short- and long-term consequences of oral HPV infection.</p

    Mercury in Tadpoles Collected from Remote Alpine Sites in the Southern Sierra Nevada Mountains, California, USA

    Full text link
    Amphibians in alpine wetlands of the Sierra Nevada mountains comprise key components of an aquatic–terrestrial food chain, and mercury contamination is a concern because concentrations in fish from this region exceed thresholds of risk to piscivorous wildlife. Total mercury concentrations were measured in whole tadpoles of the Sierra chorus frog, Pseudacris sierra, two times at 27 sites from high elevations (2786–3375 m) in the southern Sierra Nevada. Median mercury concentrations were 14 ng/g wet weight (154 ng/g dry weight), which were generally low in comparison to tadpoles of 15 other species/location combinations from studies that represented both highly contaminated and minimally contaminated sites. Mercury concentrations in P. sierra were below concentrations known to be harmful in premetamorphic tadpoles of another species and below threshold concentrations for risk to predaceous wildlife. Concentrations in tadpoles were also lower than those observed in predaceous fish in the study region presumably because tadpoles in the present study were much younger (1–2 months) than fish in the other study (3–10 years), and tadpoles represent a lower trophic level than these fish. Mercury concentrations were not related to distance from the adjacent San Joaquin Valley, a source of agricultural and industrial pollutants

    Probabilistic Seismic Hazard Analysis at Regional and National Scales: State of the Art and Future Challenges

    No full text
    Seismic hazard modeling is a multidisciplinary science that aims to forecast earthquake occurrence and its resultant ground shaking. Such models consist of a probabilistic framework that quantifies uncertainty across a complex system; typically, this includes at least two model components developed from Earth science: seismic source and ground motion models. Although there is no scientific prescription for the forecast length, the most common probabilistic seismic hazard analyses consider forecasting windows of 30 to 50 years, which are typically an engineering demand for building code purposes. These types of analyses are the topic of this review paper. Although the core methods and assumptions of seismic hazard modeling have largely remained unchanged for more than 50 years, we review the most recent initiatives, which face the difficult task of meeting both the increasingly sophisticated demands of society and keeping pace with advances in scientific understanding. A need for more accurate and spatially precise hazard forecasting must be balanced with increased quantification of uncertainty and new challenges such as moving from time-independent hazard to forecasts that are time dependent and specific to the time period of interest. Meeting these challenges requires the development of science-driven models, which integrate all information available, the adoption of proper mathematical frameworks to quantify the different types of uncertainties in the hazard model, and the development of a proper testing phase of the model to quantify its consistency and skill. We review the state of the art of the National Seismic Hazard Modeling and how the most innovative approaches try to address future challenges
    • …
    corecore