94 research outputs found

    Modulation of GLP-1 levels by a genetic variant that regulates the cardiovascular effects of intensive glycemic control in ACCORD

    Get PDF
    OBJECTIVE A genome-wide association study in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial identified two markers (rs57922 and rs9299870) that were significantly associated with cardiovascular mortality during intensive glycemic control and could potentially be used, when combined into a genetic risk score (GRS), to identify patients with diabetes likely to derive benefit from intensive control rather than harm. The aim of this study was to gain insights into the pathways involved in the modulatory effect of these variants. RESEARCH DESIGN AND METHODS Fasting levels of 65 biomarkers were measured at baseline and at 12 months of follow-up in the ACCORD-Memory in Diabetes (ACCORD- MIND) MRI substudy (n = 562). Using linear regression models, we tested the association of the GRS with baseline and 12-month biomarker levels, and with their difference (D), among white subjects, with genotype data (n = 351) stratified by intervention arm. RESULTS A significant association was observed between GRS and DGLP-1 (glucagon-like peptide 1, active) in the intensive arm (P = 3 3 1024). This effect was driven by rs57922 (P = 5 3 1024). C/C homozygotes, who had been found to derive cardiovascular benefits from intensive treatment, showed a 22% increase in GLP-1 levels during follow-up. By contrast, T/T homozygotes, who had been found to experience increased cardiac mortality with intensive treatment, showed a 28% reduction in GLP-1 levels. No association between DGLP-1 and GRS or rs57922 was observed in the standard treatment arm. CONCLUSIONS Differences in GLP-1 axis activation may mediate the modulatory effect of variant rs57922 on the cardiovascular response to intensive glycemic control. These findings highlight the importance of GLP-1 as a cardioprotective factor

    Genetic tools for coronary risk assessment in type 2 diabetes: A cohort study from the ACCORD clinical trial

    Get PDF
    OBJECTIVE We evaluated whether the increasing number of genetic loci for coronary artery disease (CAD) identified in the general population could be used to predict the risk of major CAD events (MCE) among participants with type 2 diabetes at high cardiovascular risk. RESEARCH DESIGN AND METHODS A weighted genetic risk score (GRS) derived from 204 variants representative of all the 160 CAD loci identified in the general population as of December 2017 was calculated in 5,360 and 1,931 white participants in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) and Outcome Reduction With Initial Glargine Intervention (ORIGIN) studies, respectively. The association between GRS and MCE (combining fatal CAD events, nonfatal myocardial infarction, and unstable angina) was assessed by Cox proportional hazards regression. RESULTS The GRS was associated with MCE risk in both ACCORD and ORIGIN (hazard ratio [HR] per SD 1.27, 95% CI 1.18–1.37, P = 4 3 10210, and HR per SD 1.35, 95% CI 1.16–1.58, P = 2 3 1024, respectively). This association was independent from interventions tested in the trials and persisted, though attenuated, after adjustment for classic cardiovascular risk predictors. Adding the GRS to clinical predictors improved incident MCE risk classification (relative integrated discrimination improvement +8%, P = 7 3 1024). The performance of this GRS was superior to that of GRS based on the smaller number of CAD loci available in previous years. CONCLUSIONS When combined into a GRS, CAD loci identified in the general population are associated with CAD also in type 2 diabetes. This GRS provides a significant improvement in the ability to correctly predict future MCE, which may increase further with the discovery of new CAD loci

    Association of fenofibrate therapy with long-term cardiovascular risk in statin-treated patients with type 2 diabetes

    Get PDF
    IMPORTANCE: Patients with type 2 diabetes are at high risk of cardiovascular disease (CVD) in part owing to hypertriglyceridemia and low high-density lipoprotein cholesterol. It is unknown whether adding triglyceride-lowering treatment to statin reduces this risk. OBJECTIVE: To determine whether fenofibrate reduces CVD risk in statin-treated patients with type 2 diabetes. DESIGN, SETTING, AND PARTICIPANTS: Posttrial follow-up of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Lipid Study between July 2009 and October 2014; 5 years of follow-up were completed for a total of 9.7 years at general community and academic outpatient research clinics in the United States and Canada. Of the original 5518 ACCORD Lipid Trial participants, 4644 surviving participants were selected based on the presence of type 2 diabetes and either prevalent CVD or CVD risk factors and high-density lipoprotein levels less than 50 mg/dL (<55 mg/dL for women and African American individuals). INTERVENTIONS: Passive follow-up of study participants previously treated with fenofibrate or masked placebo. MAIN OUTCOMES AND MEASURES: Occurrence of cardiovascular outcomes including primary composite outcome of fatal and nonfatal myocardial infarction and stroke in all participants and in prespecified subgroups. RESULTS: The 4644 follow-on study participants were broadly representative of the original ACCORD study population and included significant numbers of women (n = 1445; 31%), nonwhite individuals (n = 1094; 21%), and those with preexisting cardiovascular events (n = 1620; 35%). Only 4.3% of study participants continued treatment with fenofibrate following completion of ACCORD. High-density lipoprotein and triglyceride values rapidly equalized among participants originally randomized to fenofibrate or placebo. Over a median total postrandomization follow-up of 9.7 years, the hazard ratio (HR) for the primary study outcome among participants originally randomized to fenofibrate vs placebo (HR, 0.93; 95% CI, 0.83-1.05; P = .25) was comparable with that originally observed in ACCORD (HR, 0.92; 95% CI, 0.79-1,08; P = .32). Despite these overall neutral results, we continued to find evidence that fenofibrate therapy effectively reduced CVD in study participants with dyslipidemia, defined as triglyceride levels greater than 204 mg/dL and high-density lipoprotein cholesterol levels less than 34 mg/dL (HR, 0.73; 95% CI, 0.56-0.95). CONCLUSIONS AND RELEVANCE: Extended follow-up of ACCORD-lipid trial participants confirms the original neutral effect of fenofibrate in the overall study cohort. The continued observation of heterogeneity of treatment response by baseline lipids suggests that fenofibrate therapy may reduce CVD in patients with diabetes with hypertriglyceridemia and low high-density lipoprotein cholesterol. A definitive trial of fibrate therapy in this patient population is needed to confirm these findings. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00000620

    Enhanced glycemic control with combination therapy for type 2 diabetes in primary care

    Get PDF
    Type 2 diabetes mellitus is an increasingly common medical problem for primary care clinicians to address. Treatment of diabetes has evolved from simple replacement of insulin (directly or through insulin secretagogs) through capture of mechanisms such as insulin sensitizers, alpha-glucosidase inhibitors, and incretins. Only very recently has recognition of the critical role of the gastrointestinal system as a major culprit in glucose dysregulation been established. Since glycated hemoglobin A1c reductions provide meaningful risk reduction as well as improved quality of life, it is worthwhile to explore evolving paths for more efficient use of the currently available pharmacotherapies. Because diabetes is a progressive disease, even transiently successful treatment will likely require augmentation as the disorder progresses. Pharmacotherapies with complementary mechanisms of action will be necessary to achieve glycemic goals. Hence, clinicians need to be well informed about the various noninsulin alternatives that have been shown to be successful in glycemic goal attainment. This article reviews the benefits of glucose control, the current status of diabetes control, pertinent pathophysiology, available pharmacological classes for combination, limitations of current therapies, and suggestions for appropriate combination therapies, including specific suggestions for thresholds at which different strategies might be most effectively utilized by primary care clinicians

    PPARA polymorphism influences the cardiovascular benefit of fenofibrate in type 2 diabetes: Findings from accord-lipid

    Get PDF
    The cardiovascular benefits of fibrates have been shown to be heterogeneous and to depend on the presence of atherogenic dyslipidemia. We investigated whether genetic variability in the PPARA gene, coding for the pharmacological target of fibrates (PPAR-a), could be used to improve the selection of patients with type 2 diabetes who may derive cardiovascular benefit from addition of this treatment to statins. We identified a common variant at the PPARA locus (rs6008845, C/T) displaying a study-wide significant influence on the effect of fenofibrate on major cardiovascular events (MACE) among 3,065 self-reported white subjects treated with simvastatin and randomized to fenofibrate or placebo in the ACCORD-Lipid trial. T/T homozygotes (36% of participants) experienced a 51% MACE reduction in response to fenofibrate (hazard ratio 0.49; 95% CI 0.34–0.72), whereas no benefit was observed for other genotypes (Pinteraction 5 3.7 3 1024). The rs6008845-by-fenofibrate interaction on MACE was replicated in African Americans from ACCORD (N 5 585, P 5 0.02) and in external cohorts (ACCORD-BP, ORIGIN, and TRIUMPH, total N 5 3059, P 5 0.005). Remarkably, rs6008845 T/T homozygotes experienced a cardiovascular benefit from fibrate even in the absence of atherogenic dyslipidemia. Among these individuals, but not among carriers of other genotypes, fenofibrate treatment was associated with lower circulating levels of CCL11—a proinflammatory and atherogenic chemokine also known as eotaxin (P for rs6008845-by-fenofibrate interaction 5 0.003). The GTEx data set revealed regulatory functions of rs6008845 on PPARA expression in many tissues. In summary, we have found a common PPARA regulatory variant that influences the cardiovascular effects of fenofibrate and that could be used to identify patients with type 2 diabetes who would derive benefit from fenofibrate treatment, in addition to those with atherogenic dyslipidemia

    Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients

    Get PDF
    Background: To quantify the association between effects of interventions on carotid intima-media thickness (cIMT) progression and their effects on cardiovascular disease (CVD) risk. Methods: We systematically collated data from randomized, controlled trials. cIMT was assessed as the mean value at the common-carotid-artery; if unavailable, the maximum value at the common-carotid-artery or other cIMT measures were used. The primary outcome was a combined CVD end point defined as myocardial infarction, stroke, revascularization procedures, or fatal CVD. We estimated intervention effects on cIMT progression and incident CVD for each trial, before relating the 2 using a Bayesian meta-regression approach. Results: We analyzed data of 119 randomized, controlled trials involving 100 667 patients (mean age 62 years, 42% female). Over an average follow-up of 3.7 years, 12 038 patients developed the combined CVD end point. Across all interventions, each 10 μm/y reduction of cIMT progression resulted in a relative risk for CVD of 0.91 (95% Credible Interval, 0.87–0.94), with an additional relative risk for CVD of 0.92 (0.87–0.97) being achieved independent of cIMT progression. Taken together, we estimated that interventions reducing cIMT progression by 10, 20, 30, or 40 μm/y would yield relative risks of 0.84 (0.75–0.93), 0.76 (0.67–0.85), 0.69 (0.59–0.79), or 0.63 (0.52–0.74), respectively. Results were similar when grouping trials by type of intervention, time of conduct, time to ultrasound follow-up, availability of individual-participant data, primary versus secondary prevention trials, type of cIMT measurement, and proportion of female patients. Conclusions: The extent of intervention effects on cIMT progression predicted the degree of CVD risk reduction. This provides a missing link supporting the usefulness of cIMT progression as a surrogate marker for CVD risk in clinical trials

    Influence of Genetic Ancestry on Human Serum Proteome.

    No full text
    Disease risk varies significantly between ethnic groups, however, the clinical significance and implications of these observations are poorly understood. Investigating ethnic differences within the human proteome may shed light on the impact of ancestry on disease risk. We used admixture mapping to explore the impact of genetic ancestry on 237 cardiometabolic biomarkers in 2,216 Latin Americans within the Outcomes Reduction with an Initial Glargine Intervention (ORIGIN) study. We developed a variance component model in order to determine the proportion of variance explained by inter-ancestry differences, and we applied it to the biomarker panel. Multivariable linear regression was used to identify and localize genetic loci affecting biomarker variability between ethnicities. Variance component analysis revealed that 5% of biomarkers were significantly impacted by genetic admixture (p &lt; 0.05/237), including C-peptide, apolipoprotein-E, and intercellular adhesion molecule 1. We also identified 46 regional associations across 40 different biomarkers (p &lt; 1.13 × 10 &lt;sup&gt;-6&lt;/sup&gt; ). An independent analysis revealed that 34 of these 46 regions were associated at genome-wide significance (p &lt; 5 × 10 &lt;sup&gt;-8&lt;/sup&gt; ) with their respective biomarker in either Europeans or Latin populations. Additional analyses revealed that an admixture mapping signal associated with increased C-peptide levels was also associated with an increase in diabetes risk (odds ratio [OR] = 6.07 per SD, 95% confidence interval [CI] 1.44 to 25.56, p = 0.01) and surrogate measures of insulin resistance. Our results demonstrate the impact of ancestry on biomarker levels, suggesting that some of the observed differences in disease prevalence have a biological basis, and that reference intervals for those biomarkers should be tailored to ancestry. Specifically, our results point to a strong role of ancestry in insulin resistance and diabetes risk
    corecore