89 research outputs found

    Efficient Detectors for Telegram Splitting based Transmission in Low Power Wide Area Networks with Bursty Interference

    Get PDF
    Low Power Wide Area (LPWA) networks are known to be highly vulnerable to external in-band interference in terms of packet collisions which may substantially degrade the system performance. In order to enhance the performance in such cases, the telegram splitting (TS) method has been proposed recently. This approach exploits the typical burstiness of the interference via forward error correction (FEC) and offers a substantial performance improvement compared to other methods for packet transmissions in LPWA networks. While it has been already demonstrated that the TS method benefits from knowledge on the current interference state at the receiver side, corresponding practical receiver algorithms of high performance are still missing. The modeling of the bursty interference via Markov chains leads to the optimal detector in terms of a-posteriori symbol error probability. However, this solution requires a high computational complexity, assumes an a-priori knowledge on the interference characteristics and lacks flexibility. We propose a further developed scheme with increased flexibility and introduce an approach to reduce its complexity while maintaining a close-to-optimum performance. In particular, the proposed low complexity solution substantially outperforms existing practical methods in terms of packet error rate and therefore is highly beneficial for practical LPWA network scenarios.Comment: Accepted for publication in IEEE Transactions on Communication

    doi:10.1155/2011/614571 Research Article MMSE Beamforming for SC-FDMA Transmission over

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider transmit beamforming for single-carrier frequency-division multiple access (SC-FDMA) transmission over frequency-selective multiple-input multiple-output (MIMO) channels. The beamforming filters are optimized for minimization of the sum of the mean-squared errors (MSEs) of the transmitted data streams after MIMO minimum mean-squared error linear equalization (MMSE-LE), and for minimization of the product of the MSEs after MIMO MMSE decision-feedback equalization (MMSE-DFE), respectively. We prove that for SC-FDMA transmission in both cases eigenbeamforming, diagonalizing the overall channel, together with a nonuniform power distribution is the optimum beamforming strategy. The optimum power allocation derived for MMSE-LE is similar in spirit to classical results for the optimum continuous-time transmit filter for linear modulation formats obtained by Berger/Tufts and Yang/Roy, whereas for MMSE-DFE the capacity achieving waterfilling strategy well known from conventional single-carrier transmission schemes is obtained. Moreover, we present a modification of the beamformer design to mitigate an increase of the peak-to-average power ratio (PAPR) which is in general associated with beamforming. Simulation results demonstrate the high performance of the proposed beamforming algorithms. 1

    On the Convergence of Iterative Receiver Algorithms Utilizing Hard Decisions

    Get PDF
    The convergence of receivers performing iterative hard decision interference cancellation (IHDIC) is analyzed in a general framework for ASK, PSK, and QAM constellations. We first give an overview of IHDIC algorithms known from the literature applied to linear modulation and DS-CDMA-based transmission systems and show the relation to Hopfield neural network theory. It is proven analytically that IHDIC with serial update scheme always converges to a stable state in the estimated values in course of iterations and that IHDIC with parallel update scheme converges to cycles of length 2. Additionally, we visualize the convergence behavior with the aid of convergence charts. Doing so, we give insight into possible errors occurring in IHDIC which turn out to be caused by locked error situations. The derived results can directly be applied to those iterative soft decision interference cancellation (ISDIC) receivers whose soft decision functions approach hard decision functions in course of the iterations
    corecore