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The convergence of receivers performing iterative hard decision interference cancellation (IHDIC) is analyzed in a general
framework for ASK, PSK, and QAM constellations. We first give an overview of IHDIC algorithms known from the literature
applied to linear modulation and DS-CDMA-based transmission systems and show the relation to Hopfield neural network theory.
It is proven analytically that IHDIC with serial update scheme always converges to a stable state in the estimated values in course of
iterations and that IHDIC with parallel update scheme converges to cycles of length 2. Additionally, we visualize the convergence
behavior with the aid of convergence charts. Doing so, we give insight into possible errors occurring in IHDIC which turn out to be
caused by locked error situations. The derived results can directly be applied to those iterative soft decision interference cancellation
(ISDIC) receivers whose soft decision functions approach hard decision functions in course of the iterations.
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1. Introduction

In this paper receivers performing iterative hard decision
interference cancellation (IHDIC) are analyzed. In such
receivers, hard estimates are generated for each symbol to
be estimated and used for cancellation of interference. This
is performed during several iterations. Algorithms based on
IHDIC have been proposed for linear modulation as well as
direct-sequence code-division multiple-access (DS-CDMA)
systems. It has to be emphasized that IHDIC was basically
proposed by Hopfield [1, 2] and Hopfield and Tank [3] , but
his primary intention was to find a neural network which
provides a content-addressable memory. The structure
found by Hopfield is also referred to as Hopfield network and
belongs to the group of neural networks; that is, IHDIC may
also be seen as a Hopfield network.

A comprehensive overview of neural networks is given
in [4–6]. Mainly, real-valued systems with symbols being
elements of a binary real-valued alphabet X, for example,
X = {0, 1} or X = {−1, +1}, have been considered. Analysis
of convergence and stability of Hopfield networks has been
carried out in [7–10], where it is shown that a Hopfield

network always can find a local minimum of an optimization
problem of the form

â = arg min
ã∈XV

∣

∣r− T ã
∣

∣
2

(1)

in several iterations where ã ∈ X
V

denotes a hypothesis
column vector of size V, T is a V × V matrix, and r is a
column vector of V observations. | · | denotes the norm
of a vector. Obviously, when considering communications
problems it is desirable to find the global minimum of (1)
which can be done with the optimum receiver resulting
in a very high complexity in most cases. However, it may
also be advantageous to find a local minimum that is close
to the global one with low complexity as the vicinity to
the global minimum ensures that the found solution differs
only slightly from the optimum one. Further analysis on the
number of stable states, the convergence time, the domain of
attraction of the stable states, and so forth, can be found in
[11–15].
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For linear modulation-based transmission, IHDIC has
been studied, for example, in [16, 17] for channel equal-
ization where the parallel update scheme was used in
conjunction with MMSE filtering. IHDIC for multiuser
detection applied to DS-CDMA-based transmission utilizing
up to 2 iterations has been proposed, for example, in [18–21].
In [19] the serial update scheme was compared by means of
simulations with the parallel one and the superiority of the
former could be shown. In these publications mostly binary
phase-shift keying (BPSK) symbols have been assumed.
In [22] IHDIC is used for pilot channel cancellation.
IHDIC using the serial and the parallel update scheme with
several iterations is considered for DS-CDMA multiuser
detection, for example, in [23–26]. Basic work on parallel
interference cancellation in DS-CDMA systems with hard
decision functions can also be found in [27, 28] whereas in
[29] an information theoretic analysis is conducted.

However, already Hopfield proposed to use a so-called
sigmoid function instead of hard limiters for continuous-
time neural networks in [1–3]. Such a sigmoid function like
the “tanh(·)” law proposed in [3] may also be seen as a soft
decision function. The advantage of using soft estimates in
place of hard decisions in receivers with feedback was first
discovered in a work by Taylor [30] on transmission with
linear modulation, where a suboptimum soft estimate of the
transmitted symbols was used in the feedback section of a
decision-feedback equalization unit.

However, since the early 1990s it was known in neural
network theory that the performance of a Hopfield network
can be improved if the slope of the “tanh(·)” function is
increased in course of iterations [5]. Later, this technique
has been adopted for algorithms performing iterative soft
decision interference cancellation (ISDIC) for DS-CDMA
and has been refined by adapting the slope of the “tanh(·)”
function using an estimate of the average power of residual
interference after cancellation [31].

In [32–34] IHDIC applied to multiuser detection is com-
pared with ISDIC and the superiority of the latter is shown.
For more information on ISDIC for linear modulation and
DS-CDMA-based transmission the reader is referred to [31,
35–38].

Though ISDIC is proven to be a superior receiver scheme
compared to IHDIC, an analysis of the convergence of
IHDIC is valuable. As mentioned above, best performance
of ISDIC can be achieved if the slope of the soft decision
function is adjusted in course of iterations. Thus, if the
employed soft decision functions approach hard decision
functions in course of iterations, then ISDIC behaves like
IHDIC. Consequently, the convergence behavior of corre-
sponding ISDIC schemes equals that of IHDIC in the last
iterations and the results of this paper can be applied.

The paper is organized as follows. First, we introduce the
system model in Section 2. In Section 3, we review IHDIC
and Hopfield networks. In several publications it has been
observed by simulations that the parallel update scheme may
lead to cycles in the estimated values in course of iterations.
Based on findings in neural network theory, we prove in
Section 4 that IHDIC always converges to a fixed solution
for the serial update scheme and amplitude-shift keying

(ASK), phase-shift keying (PSK), or quadrature amplitude
modulation (QAM) constellations. In Section 5, we prove
that IHDIC converges to cycles of length 2 for the parallel
update scheme. Note that this also includes the case where
the estimates remain constant in course of iterations. In
Section 6, we visualize the convergence of IHDIC with the
aid of simulations and concluding remarks are given in
Section 7.

2. SystemModel

For IHDIC algorithms we use a matrix-vector notation in
the discrete-time domain. All signals are represented by their
complex-valued baseband equivalents. An uncoded packet
transmission with complex-valued symbols aν ∈ X which
are stacked in a vector a = [a1, . . . , aν, . . . , aV]T is considered
((·)T: transposition). X denotes the signal alphabet which
may contain the elements from an ASK, PSK, or QAM signal
constellation. We define a transmission matrixT of size L×V,
whose entries are determined by the transmission pulses
and/or the respective channel impulse response (CIR). Then,
the received signal vector r = [r1, . . . , rl, . . . , rL]T of size L can
be expressed as

r = T · a + n, (2)

where n = [n1, . . . ,nl, . . . ,nL]T contains discrete-time
complex white Gaussian noise values nl with variance σ2

n .
Obviously, the system model according to (2) includes a
transmission with linear modulation or DS-CDMA as special
cases.

3. Mode of Operation of IHDIC and
Hopfield Networks

Both IHDIC and Hopfield networks operate in an iterative
fashion. In each iteration μ (μ > 0) of the Hopfield network
a new hard estimate âν,μ is calculated for each symbol index
ν ∈ {1, . . . ,V} according to

âν,μ =H

(

1
ρν,ν

(

T(:,ν)
)H
(

r− T · ̂a′ν,μ

)

)

. (3)

Here, H(·) denotes the hard decision function for the used
modulation scheme. The vector ̂a

′
ν,μ contains hard estimates

of interfering symbols and is built according to

̂a
′
ν,μ =

[

â1,μ+H , . . . , âν−1,μ+H , 0, âν+1,μ−1, . . . , âV,μ−1

]T
. (4)

The estimates in vector ̂a
′
ν,μ are utilized in (3) to cancel

interference effective on the symbol aν taking the effective
transmit pulses in matrix T into account. Subsequent
matched filtering with 1/ρν,ν(T(:,ν))

H and application of the
hard decision function H(·) yields a new hard estimate
âν,μ in iteration μ ((·)H: Hermitian transposition). T(:,ν)

denotes the νth column of matrix T and contains the effective
transmission pulse of symbol aν which has energy ρν,ν =
(T(:,ν))

H · T(:,ν). For H = 0 the Hopfield network performs
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serial updating of the estimates and for H = −1 a parallel
update is done. In the former case, always the latest estimates
are utilized whereas in the latter case exclusively the estimates
of the last iteration μ − 1 are exploited for calculation of
a new estimate. The values âν,μ are initialized according to
âν,0 = 0 for all ν.

The algorithm stops, if the estimates âν,μ do not change
from iteration μ to the next one μ + 1 for all symbol indices
ν ∈ {1, . . . ,V}, that is,

âν,μ = âν,μ+1 ∀ν ∈ {1, . . . ,V}, (5)

or the iteration number exceeds a prescribed limit μmax. The
last iteration performed by the IHDIC scheme is denoted
with μstop. Then IHDIC delivers the final estimates âν =
âν,μstop for all ν ∈ {1, . . . ,V}.

4. Convergence of IHDIC and Hopfield
Networks for Serial Update

In Hopfield network theory only real-valued systems with
symbols being elements of a binary real-valued alphabet
X have been considered. Convergence and stability analysis
for Hopfield networks in serial and parallel update mode
have been carried out in [1–3, 5, 6, 8–10]. In this and the
next section, we give a generalization for complex-valued
communications systems and ASK, PSK, and QAM symbol
alphabets.

Theorem 1. For serial update, a Hopfield network or IHDIC,
respectively, always converges to a fixed state in course of
iterations for ASK, PSK, or QAM symbols.

Proof. Convergence of a Hopfield network for serial update
(H = 0) can be proven by analyzing

E =
∣

∣

∣r− T · âμ
∣

∣

∣

2
, (6)

with

âμ =
[

â1,μ, . . . , âν,μ, . . . , âV,μ

]T
, âν,μ∈X ∀ν∈{1, . . . ,V},

(7)

after each estimate âν,μ has been updated. It can be shown
that the error energy E remains constant or decreases having
updated an estimate. As E is bounded from below, that is, E ≥
0, the serial update rule ensures convergence of the Hopfield
network.

Let us assume that an update of an estimate has just been
done in the Hopfield network yielding the squared norm
according to (6) which is indicated by E′. The next estimate
to be updated is denoted by âν0,μ and the corresponding
squared norm after updating this symbol is indicated by E′′.
Without loss of generality it is assumed that 1 < ν0 ≤ V
to ease notation. For the following analysis we introduce the
vector

â′ν0,μ =
[

â1,μ, . . . , âν0−1,μ, âν0,μ, âν0+1,μ−1, . . . , âV,μ−1

]T
, (8)

which contains the latest estimates after updating the
estimate on aν0 in iteration μ. With help of (2) and (6) the
difference E′′ − E′ can be written as

E′′ − E′ =
∣

∣

∣r− T · â′ν0,μ

∣

∣

∣

2 −
∣

∣

∣r− T · â′ν0−1,μ

∣

∣

∣

2

= −2 Re
{

â’H
ν0,μT

Hr
}

+ â’H
ν0,μT

HTâ′ν0,μ

+ 2 Re
{

â’H
ν0−1,μT

Hr
}

− â’H
ν0−1,μT

HTâ′ν0−1,μ

= −2 Re
{

â∗ν0,μT
H
(:,ν0)r

}

+ 2 Re

⎧

⎨

⎩

â∗ν0,μ

⎛

⎝

ν0−1
∑

ν=1

ρν,ν0 âν,μ +
V
∑

ν=ν0+1

ρν,ν0 âν,μ−1

⎞

⎠

⎫

⎬

⎭

+ ρν0,ν0

∣

∣

∣âν0,μ

∣

∣

∣

2
+ 2 Re

{

â∗ν0,μ−1T
H
(:,ν0)r

}

− 2 Re

⎧

⎨

⎩

â∗ν0,μ−1

⎛

⎝

ν0−1
∑

ν=1

ρν,ν0 âν,μ +
V
∑

ν=ν0+1

ρν,ν0 âν,μ−1

⎞

⎠

⎫

⎬

⎭

− ρν0,ν0

∣

∣

∣âν0,μ−1

∣

∣

∣

2

= ρν0,ν0

(

−2 Re
{

â∗ν0,μãν0,μ

}

+
∣

∣

∣âν0,μ

∣

∣

∣

2

+2 Re
{

â∗ν0,μ−1ãν0,μ

}

−
∣

∣

∣âν0,μ−1

∣

∣

∣

2
)

= ρν0,ν0

(
∣

∣

∣ãν0,μ − âν0,μ

∣

∣

∣

2 −
∣

∣

∣ãν0,μ − âν0,μ−1

∣

∣

∣

2
)

,

(9)

where the MF estimate after cancellation of interference (cf.
(3))

ãν,μ = 1
ρν,ν

TH
(:,ν)

(

r− T · ̂a′ν,μ

)

(10)

and the crosscorrelation values of the effective transmission
pulses

[

ρ1,ν, . . . , ρV,ν
] = (T(:,ν)

)H · T (11)

have been used. Obviously, in (9) the quantity

∣

∣

∣ãν0,μ − âν0,μ

∣

∣

∣

2
(12)

corresponds to the metric of a maximum-likelihood hypoth-
esis test [39], where ãν0,μ is an observed value and âν0,μ ∈
X for μ > 0 is the hypothesis. The set X may contain
an arbitrary ASK, PSK, or QAM constellation. As the hard
decision applied in the Hopfield network

âν0,μ =H
(

ãν0,μ

)

(13)

(cf. (3)) and (10), always minimizes (12) and

âν0,μ =H
(

ãν0,μ

)

= arg min
ă∈X

∣

∣

∣ãν0,μ − ǎ
∣

∣

∣

2

(14)
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holds, using (9), (14), and ρν0,ν0 > 0 it can be concluded that

E′′ − E′ = 0 for âν0,μ = âν0,μ−1, (15)

E′′ − E′ < 0 for âν0,μ /= âν0,μ−1. (16)

It has to be emphasized, that âν0,μ−1 is generated based
on ãν0,μ−1 and therefore not necessarily minimizes |ãν0,μ −
âν0,μ−1|2.

This means either E remains constant from one iteration
to the next (cf. (15)) or it decreases (cf. (16)) and as E
is bounded from below, the algorithm converges for the
serial update scheme. Hence, a Hopfield network with serial
update always converges to a minimum of E in (6) but not
necessarily to the global one for ASK, PSK, or QAM symbols.
The example in Figure 1 also visualizes this behavior.

Example 2. A simple example is given in the following for
BPSK transmission, that is, aν ∈ X = {−1, +1}, with
two transmitted symbols (V = 2). We consider the IHDIC
estimates for the two symbols a1 and a2 in each iteration.
Furthermore, a1 = +1, a2 = +1 is assumed and the energy
of the respective transmission pulses is normalized to ρ1,1 =
ρ2,2 = 1. The crosscorrelation values are set to ρ1,2 = ρ2,1 =
−0.6. For ease of understanding we assume zero noise power
σ2
n = 0 in the following. For this example, (3) reads

â1,μ =H
(

ã1 − ρ2,1â2,μ−1

)

= sgn
(

0.4 + 0.6 · â2,μ−1

)

, (17)

â2,μ =H
(

ã2 − ρ1,2â1,μ

)

= sgn
(

0.4 + 0.6 · â1,μ

)

, (18)

where we have used the MF outputs without cancellation
ã1 = ã2 = 0.4 with ãν = (1/ρν,ν)(T(:,ν))

Hr (cf. (3)) and have
applied a serial update scheme. The hard decision function
H(·) is equivalent to the signum function sgn(·) for BPSK.
In Figure 1, a convergence chart is given for the selected
parameters. Obviously, there is a similarity to EXIT charts
(cf. [40]). Figure 1 is easily constructed from (17) and (18).
To ease representation, the iteration index μ is omitted.
This means â1 and â2 in Figure 1 display the current hard
estimates â1,μ and â2,μ in each iteration μ. It can be seen that
starting from the initialization (0, 0) the IHDIC algorithm
directly finds the correct solution (1, 1).

However, given that the algorithm has to start with ã2 <
−2/3 it is easily understood that IHDIC would converge to
the estimates (−1,−1) and would remain there. Hence, the
estimates (−1,−1) establish a kind of locked error situation.
This means that given some errors in the hard estimates âν,μ,
it is possible that cancellation using erroneously detected
symbols causes an amount of interference that causes other
symbols to be detected erroneously which in turn causes the
first group of symbols to be detected in the same wrong way.
We denote this case as locked error situation [41].

5. Convergence of IHDIC and Hopfield
Networks for Parallel Update

Convergence analysis of parallel interference cancellation
(PIC) for DS-CDMA has been carried out in [42–46].

â2

1

â1
1(b)−2/3−1

−2/3

−1

(a)

Figure 1: Analysis of a locked error situation with convergence
chart formed by two nested hard decision functions for BPSK and
IHDIC with serial update: initialization (a) converges to the wrong
solution (−1,−1), whereas for initialization (b) the correct solution
(1, 1) is found. Therefore, solution (−1,−1) corresponds to a locked
error situation.

However, decision functions have not been taken into
account in the analysis resulting in an easier tractability via
eigenvalues. In this section, we analyze the convergence of
IHDIC including decision functions. For binary real-valued
alphabets X the convergence behavior of Hopfield networks
for parallel update has been analyzed, for example, in [9].

Theorem 3. A Hopfield network or IHDIC, respectively,
employing a parallel update rule converges either to a stable
state or to cycles of length 2 for ASK, PSK, or QAM symbols
if all effective transmission pulses of the involved symbols have
equal energy. For PSK symbols a Hopfield network or IHDIC,
respectively, employing a parallel update rule converges either
to a stable state or to cycles of length 2 even if all effective
transmission pulses of the involved symbols have not equal
energy.

Proof. The proof is similar to that in Section 4 where an
energy function is defined which is shown to be bounded
from below and nonincreasing during the iterations.

First Part. We first focus on the first part of the theorem and
assume that all effective transmission pulses of the involved
symbols have equal energy, that is,

ρ1,1 = · · · = ρν,ν = · · · = ρV,V . (19)

For analysis of the convergence of a Hopfield network with
parallel update the new auxiliary energy function

E′μ =2 Re
{

−
(

âμ+ âμ−1

)H
D−1

ρ THr + âH
μ D

−1
ρ

(

THT−Dρ

)

âμ−1

}

+ âH
μ âμ + âH

μ−1âμ−1

(20)
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is introduced only for analysis of the convergence behavior
where

Dρ = diag
(

ρ1,1, . . . , ρV,V
)

(21)

and the vector âμ according to (7) are used. Obviously, E′μ is
bounded from below as the entries in the vectors âμ and âμ−1

are complex-valued but finite. In the following, the difference
E′μ+1 − E′μ is analyzed:

E′μ+1 − E′μ

= 2 Re
{

−
(

âμ+1 + âμ
)H

D−1
ρ THr + âH

μ+1D
−1
ρ

(

THT−Dρ

)

âμ

+
(

âμ + âμ−1

)H
D−1

ρ THr− âH
μ D

−1
ρ

(

THT−Dρ

)

âμ−1

}

+ âH
μ+1âμ+1 + âH

μ âμ − âH
μ âμ − âH

μ−1âμ−1

(22)

= 2 Re
{

−âH
μ+1D

−1
ρ THr + âH

μ+1D
−1
ρ

(

THT−Dρ

)

âμ

+âH
μ−1D

−1
ρ THr− âH

μ−1D
−1
ρ

(

THT−Dρ

)

âμ
}

+ âH
μ+1âμ+1 − âH

μ−1âμ−1

(23)

= −2 Re
{

âH
μ+1D

−1
ρ

(

THr−
(

THT−Dρ

)

âμ
)}

+ âH
μ+1âμ+1

+ 2 Re
{

âH
μ−1D

−1
ρ

(

THr−
(

THT−Dρ

)

âμ
)}

− âH
μ−1âμ−1

=
∣

∣

∣ãμ+1 − âμ+1

∣

∣

∣

2 −
∣

∣

∣ãμ+1 − âμ−1

∣

∣

∣

2
,

(24)

where a vector containing all MF outputs after interference
cancellation in the Hopfield network

ãμ+1 = D−1
ρ

(

THr−
(

THT−Dρ

)

âμ
)

(25)

is used. Note that the condition in (19) is necessary for
derivation of (23) from (22). With this condition we obtain

Re
{

âH
μ D

−1
ρ

(

THT−Dρ

)

âμ−1

}

= Re
{

(

âH
μ D

−1
ρ

(

THT−Dρ

)

âμ−1

)H
}

= Re
{

âH
μ−1

(

THT−Dρ

)

D−1
ρ âμ

}

= Re
{

âH
μ−1D

−1
ρ

(

THT−Dρ

)

âμ
}

.

(26)

Like in (12) the metric of a maximum-likelihood hypothesis
test [39]

∣

∣

∣ãμ+1 − âμ+1

∣

∣

∣

2
(27)

appears, where ãμ+1 is an observed vector and âμ+1 ∈ XV

for μ ≥ 0 is the hypothesis. As the vector-based hard decision
made in the Hopfield network

âμ+1 =H ′
(

ãμ+1

)

(28)

always minimizes (27) with

âμ+1 =H ′
(

ãμ+1

)

= arg min
ǎ∈XV

∣

∣

∣ãμ+1 − ǎ
∣

∣

∣

2
, (29)

the inequality

∣

∣

∣ãμ+1 − âμ+1

∣

∣

∣

2 ≤
∣

∣

∣ãμ+1 − âμ−1

∣

∣

∣

2
(30)

is valid as âμ−1 is generated based on ãμ−1 and therefore not
necessarily minimizes |ãμ+1 − âμ−1|2. Note that the set X
may contain an arbitrary ASK, PSK, or QAM constellation.
Therefore, using (24) and (30) it can be concluded that

E′μ+1 − E′μ = 0 for âμ+1 = âμ−1, (31)

E′μ+1 − E′μ < 0 for âμ+1 /= âμ−1. (32)

This means neglecting the first value of the energy E′0 = 0
which is related to the initialization âν,0 = 0 for all ν, the
energy function decreases monotonically (cf. (32)) in the
first iterations and will always converge to a value where it
remains constant as it is bounded from below. In this state,
according to (31) cycles of length 2 occur, which includes the
case where âμ remains constant, that is, âμ+1 = âμ = âμ−1.

Second Part. To prove the second part of the theorem,
we focus on PSK and do not apply any restrictions to
the energy ρν,ν of the effective transmission pulses of the
involved symbols. For analysis we modify the auxiliary
energy function (cf. (20)) to

E′μ = 2 Re
{

−
(

âμ + âμ−1

)H
THr + âH

μ

(

THT−Dρ

)

âμ−1

}

+ âH
μ âμ + âH

μ−1âμ−1.

(33)

Similarly to (24) we calculate the difference E′μ+1 − E′μ which
leads to

E′μ+1 − E′μ =
∣

∣

∣Dρãμ+1 − âμ+1

∣

∣

∣

2 −
∣

∣

∣Dρãμ+1 − âμ−1

∣

∣

∣

2
(34)

with ãμ+1 according to (25) and Dρ according to (21), but
without any restrictions to the energies ρ1,1, . . . , ρV,V . In the
Hopfield network or IHDIC, respectively, the hard decision
is based on ãμ+1,

âμ+1 =H ′
(

ãμ+1

)

. (35)

However, for PSK

âμ+1 =H ′
(

ãμ+1

)

=H ′
(

Dρãμ+1

)

= arg min
ǎ∈XV

∣

∣

∣Dρãμ+1 − ǎ
∣

∣

∣

2

(36)

is valid, as some scaling with positive real-valued coefficients
in diagonal matrix Dρ does not change the result of the
hard decision. Hence, the hard decisions in vector âμ+1 also
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â2

1

â1
1−2/3−1

−2/3

−1

Figure 2: Analysis of a cycle of length 2 with convergence chart
formed by two nested hard decision functions for BPSK and IHDIC
with parallel update: in course of iterations the estimates (1,−1) lead
to (−1, 1) which in turn results in (1,−1) (cf. also Figure 1).

minimize |Dρãμ+1 − âμ+1|2. Therefore, it holds

∣

∣

∣Dρãμ+1 − âμ+1

∣

∣

∣

2 ≤
∣

∣

∣Dρãμ+1 − âμ−1

∣

∣

∣

2
(37)

similarly to (30) which leads again to (31) and (32).
Hence, for PSK symbols a Hopfield network employing

a parallel update rule converges either to a stable state or to
cycles of length 2 even if the effective transmission pulses of
the involved symbols have not equal energy.

Example 4. In the following, the occurrence of cycles
of length 2 is visualized by an example. In Figure 2, a
convergence chart is given based on the parameters of
the example in Section 4 (cf. Figure 1). However, now the
parallel update scheme is used in IHDIC. Again, we assume
a BPSK transmission, that is, aν ∈ X = {−1, +1}, with
two transmitted symbols (V = 2). In Figure 2, â1 and â2

represent the current hard estimates â1,μ and â2,μ in each
iteration μ. Obviously, for parallel update, the estimates
(1,−1) lead to (−1, 1) which in turn results in the estimates
(1,−1) in the next step. Hence, a cycle of length 2 is
established. But as proven above, also stable solutions may
occur for the parallel update as they can be interpreted
as a special case of cycles. In the example in Figure 2, the
estimates (1, 1) and (−1,−1) correspond to stable solutions
of the parallel update scheme.

6. Simulation Results

Figures 3, 4, and 5 show the possible convergence behavior
of IHDIC with parallel update for a synchronous DS-CDMA
transmission for 4ASK, 8PSK, and 16QAM, respectively.
Each figure displays the progress of the bit error ratio (BER)
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0 2 4 6 8 10 12 14 16 18 20
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Iterations μ

Convergence to correct solution
Convergence to locked error situation
Convergence to cycle of length 2

Figure 3: Possible convergence behavior for IHDIC with parallel
update for 10 log10(Eb/N0) = 15 dB, synchronous DS-CDMA
transmission over an AWGN channel with V = 128 users
employing 4ASK and complex-valued random spreading sequences
with spreading factor L = 256.
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Figure 4: Possible convergence behavior for IHDIC with parallel
update for 10 log10(Eb/N0) = 15 dB, synchronous DS-CDMA
transmission over an AWGN channel with V = 64 users employing
8PSK and complex-valued random spreading sequences with
spreading factor L = 256.

versus the number of iterations μ of IHDIC for a single
data transmission. Complex-valued spreading sequences
with spreading factor L = 256 are utilized. The column
vectors T(:,ν) corresponding to the effective transmission
pulses contain the spreading sequences of different users
where each element T(l,ν) is chosen randomly from the set
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Figure 5: Possible convergence behavior for IHDIC with parallel
update for 10 log10(Eb/N0) = 15 dB, synchronous DS-CDMA
transmission over an AWGN channel with V = 64 users employing
16QAM and complex-valued random spreading sequences with
spreading factor L = 256.

{(−1− j)/
√

2L, (−1 + j)/
√

2L, (+1− j)/
√

2L, (+1 + j)/
√

2L}
for l ∈ {1, . . . ,L} and each spreading sequence index
ν ∈ {1, . . . ,V}. Here, j means the imaginary unit ( j2 =
−1). The underlying additive white Gaussian noise (AWGN)
channel is characterized by 10 log10(Eb/N0) = 15 dB (Eb:
received energy per information bit, N0: single-sided power
spectral density of noise). In Figure 3 transmission using
4ASK symbols with V = 128 users is considered. Figure 4
shows results for 8PSK transmission with V = 64 users
and Figure 5 visualizes the possible convergence behavior for
16QAM transmission with V = 64 users. The displayed BER
has been determined by evaluating the received symbols of
all V users for a certain channel use. As proven above and
visualized in Figures 3, 4, and 5, a Hopfield network with
parallel update converges to a cycle of length 2 or to a stable
state where the relation âμ+1 = âμ = âμ−1 holds. A stable
state can be a locked error situation or the correct solution.
In case of convergence to the correct solution the BER curves
stop in the logarithmic representation of Figures 3, 4, and 5
at a certain iteration index as BER = 0 for higher iteration
indices.

7. Concluding Remarks

In this paper iterative hard decision interference cancellation
(IHDIC) has been studied. An overview of IHDIC applied
to linear modulation and DS-CDMA-based transmission
systems, respectively, has been given and the relation to
Hopfield neural network theory has been pointed out.
Convergence of IHDIC has been analyzed in a general
framework for ASK, PSK, and QAM constellations. It has

been proven that IHDIC with serial update scheme always
converges to a stable state in the estimated values in course
of iterations and that IHDIC with parallel update scheme
converges to cycles of length 2. Furthermore, we gave insight
into possible errors occurring in IHDIC which turned
out to be caused by locked error situations. The derived
results can be directly transferred to those iterative soft
decision interference cancellation (ISDIC) receivers whose
soft decision functions approach hard decision functions in
course of the iterations.
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