196 research outputs found

    Population ecology of two woodland caribou herds in the southern Yukon

    Get PDF
    Since the mid 1980's, the Aishihik herd of woodland caribou (Rangifer tarandus caribou) declined from approximately 1500 to 583 animals. During the same period a nearby herd, the Wolf Lake Herd increased from approximately 664 to 1249 animals. This paper compares aspects of the ecology of these two herds to determine how these relationships conform to a general model of caribou population ecology described by Seip (1992). Comparisons include caribou demographic characteristics and distribution patterns, predator densities, abundance of alternate prey, human hunting and snow depth on caribou winter range. Ecological differences between herds were apparent in the ratio of prime bulls to cows, the abundance of moose (Alces alces), the occurrence of coyotes (Canis latrans), late winter snow conditions, and access to hunting. We hypothesize that the Wolf Lake herd was able to grow because wolves {Canis lupus) preyed mainly on the relatively abundant moose population. A highly clumped winter caribou distribution may have further reduced the impact of wolf predation on the Wolf Lake herd. In contrast, the decline of the Aishihik herd was accompanied by a relative scarcity of moose, few prime aged caribou bulls probably due to a more liberal trophy harvest, and wider late-winter dispersion that offered wolves greater access to caribou. The decline may have been exaggerated by the peak in the snowshoe hare (Lepus americanus) cycle which may have temporarily improved wolf pup survival. We suspect that moose are normally the primary prey of wolves in the Yukon and that a decline in moose eventually results in their being too scarce to offer an economical prey choice, prompting a prey switch to caribou. Results of our analyses conform incompletely to Seip's (1992) model for woodland caribou population ecology, particularly because the Wolf Lake herd prospered where moose were relatively abundant

    Previously Unidentified Changes in Renal Cell Carcinoma Gene Expression Identified by Parametric Analysis of Microarray Data

    Get PDF
    BACKGROUND. Renal cell carcinoma is a common malignancy that often presents as a metastatic-disease for which there are no effective treatments. To gain insights into the mechanism of renal cell carcinogenesis, a number of genome-wide expression profiling studies have been performed. Surprisingly, there is very poor agreement among these studies as to which genes are differentially regulated. To better understand this lack of agreement we profiled renal cell tumor gene expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to previous microarray studies. METHODS. We hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected differential gene expression in the resulting dataset with parametric methods and identified keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test. RESULTS. We identify 1,234 genes that are more than three-fold changed in renal tumors by t-test, 800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37 genes that have been identified as being differentially expressed in three or more of five previous microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A key to the sensitivity and power of our analysis is filtering out defective samples and genes that are not reliably detected. CONCLUSIONS. The widespread use of sample-wise voting schemes for detecting differential expression that do not control for false positives likely account for the poor overlap among previous studies. Among the many genes we identified using parametric methods that were not previously reported as being differentially expressed in renal cell tumors are several oncogenes and tumor suppressor genes that likely play important roles in renal cell carcinogenesis. This highlights the need for rigorous statistical approaches in microarray studies.National Institutes of Healt

    Meeting Summary, Faculty Women's Club Endowment Fund

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/88944/1/1998_FWC_Meeting_Summary.pd

    A Genome-Wide Association Study of Hypertension and Blood Pressure in African Americans

    Get PDF
    The evidence for the existence of genetic susceptibility variants for the common form of hypertension (“essential hypertension”) remains weak and inconsistent. We sought genetic variants underlying blood pressure (BP) by conducting a genome-wide association study (GWAS) among African Americans, a population group in the United States that is disproportionately affected by hypertension and associated complications, including stroke and kidney diseases. Using a dense panel of over 800,000 SNPs in a discovery sample of 1,017 African Americans from the Washington, D.C., metropolitan region, we identified multiple SNPs reaching genome-wide significance for systolic BP in or near the genes: PMS1, SLC24A4, YWHA7, IPO7, and CACANA1H. Two of these genes, SLC24A4 (a sodium/potassium/calcium exchanger) and CACNA1H (a voltage-dependent calcium channel), are potential candidate genes for BP regulation and the latter is a drug target for a class of calcium channel blockers. No variant reached genome wide significance for association with diastolic BP (top scoring SNP rs1867226, p = 5.8×10−7) or with hypertension as a binary trait (top scoring SNP rs9791170, p = 5.1×10−7). We replicated some of the significant SNPs in a sample of West Africans. Pathway analysis revealed that genes harboring top-scoring variants cluster in pathways and networks of biologic relevance to hypertension and BP regulation. This is the first GWAS for hypertension and BP in an African American population. The findings suggests that, in addition to or in lieu of relying solely on replicated variants of moderate-to-large effect reaching genome-wide significance, pathway and network approaches may be useful in identifying and prioritizing candidate genes/loci for further experiments

    A dynamic database of microarray-characterized cell lines with various cytogenetic and genomic backgrounds

    Get PDF
    The Human Genetic Cell Repository sponsored by the National Institute of General Medical Sciences (NIGMS) contains more than 11,000 cell lines and DNA samples collected from numerous individuals. All of these cell lines and DNA samples are categorized into several collections representing a variety of disease states, chromosomal abnormalities, heritable diseases, distinct human populations, and apparently healthy individuals. Many of these cell lines have previously been studied with detailed conventional cytogenetic analyses, including G-banded karyotyping and fluorescence in situ hybridization. This work was conducted by investigators at submitting institutions and scientists at Coriell Institute for Medical Research, where the NIGMS Repository is hosted. Recently, approximately 900 cell lines, mostly chosen from the Chromosomal Aberrations and Heritable Diseases collections, have been further characterized in detail at the Coriell Institute using the Affymetrix Genome-Wide Human SNP Array 6.0 to detect copy number variations and copy number neutral loss of heterozygosity. A database containing detailed cytogenetic and genomic information for these cell lines has been constructed and is freely available through several sources, such as the NIGMS Repository website and the University of California at Santa Cruz Genome Browser. As additional cell lines are analyzed and subsequently added into it, the database will be maintained dynamically

    Development of admixture mapping panels for African Americans from commercial high-density SNP arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Admixture mapping is a powerful approach for identifying genetic variants involved in human disease that exploits the unique genomic structure in recently admixed populations. To use existing published panels of ancestry-informative markers (AIMs) for admixture mapping, markers have to be genotyped <it>de novo </it>for each admixed study sample and samples representing the ancestral parental populations. The increased availability of dense marker data on commercial chips has made it feasible to develop panels wherein the markers need not be predetermined.</p> <p>Results</p> <p>We developed two panels of AIMs (~2,000 markers each) based on the Affymetrix Genome-Wide Human SNP Array 6.0 for admixture mapping with African American samples. These two AIM panels had good map power that was higher than that of a denser panel of ~20,000 random markers as well as other published panels of AIMs. As a test case, we applied the panels in an admixture mapping study of hypertension in African Americans in the Washington, D.C. metropolitan area.</p> <p>Conclusions</p> <p>Developing marker panels for admixture mapping from existing genome-wide genotype data offers two major advantages: (1) no <it>de novo </it>genotyping needs to be done, thereby saving costs, and (2) markers can be filtered for various quality measures and replacement markers (to minimize gaps) can be selected at no additional cost. Panels of carefully selected AIMs have two major advantages over panels of random markers: (1) the map power from sparser panels of AIMs is higher than that of ~10-fold denser panels of random markers, and (2) clusters can be labeled based on information from the parental populations. With current technology, chip-based genome-wide genotyping is less expensive than genotyping ~20,000 random markers. The major advantage of using random markers is the absence of ascertainment effects resulting from the process of selecting markers. The ability to develop marker panels informative for ancestry from SNP chip genotype data provides a fresh opportunity to conduct admixture mapping for disease genes in admixed populations when genome-wide association data exist or are planned.</p

    Vitamin D and subsequent all-age and premature mortality: a systematic review

    Get PDF
    &lt;br&gt;Background: All-cause mortality in the population &#60; 65 years is 30% higher in Glasgow than in equally deprived Liverpool and Manchester. We investigated a hypothesis that low vitamin D in this population may be associated with premature mortality via a systematic review and meta-analysis.&lt;/br&gt; &lt;br&gt;Methods: Medline, EMBASE, Web of Science, the Cochrane Library and grey literature sources were searched until February 2012 for relevant studies. Summary statistics were combined in an age-stratified meta-analysis.&lt;/br&gt; &lt;br&gt;Results: Nine studies were included in the meta-analysis, representing 24,297 participants, 5,324 of whom died during follow-up. The pooled hazard ratio for low compared to high vitamin D demonstrated a significant inverse association (HR 1.19, 95% CI 1.12-1.27) between vitamin D levels and all-cause mortality after adjustment for available confounders. In an age-stratified meta-analysis, the hazard ratio for older participants was 1.25 (95% CI 1.14-1.36) and for younger participants 1.12 (95% CI 1.01-1.24).&lt;/br&gt; &lt;br&gt;Conclusions: Low vitamin D status is inversely associated with all-cause mortality but the risk is higher amongst older individuals and the relationship is prone to residual confounding. Further studies investigating the association between vitamin D deficiency and all-cause mortality in younger adults with adjustment for all important confounders (or using randomised trials of supplementation) are required to clarify this relationship.&lt;/br&gt

    Quantum nondemolition measurements using a fully quantized parametric interaction

    Get PDF
    A quantum nondemolition measurement based on a three-mode interaction mediated by a second-order nonlinear susceptibility is discussed. All three modes are treated quantum mechanically. The signal field is taken as one of the three modes and the probe field is the combined field in the other two modes. If the probe system is initially in a number state, the interaction between the signal and probe is equivalent to that between a harmonic oscillator and an angular momentum system. Photon counting on the probe field realizes a quantum nondemolition measurement of the square of a quadrature phase amplitude of the signal, and thus provides a direct measurement of second-order squeezing

    UGT1A1 is a major locus influencing bilirubin levels in African Americans

    Get PDF
    Total serum bilirubin is associated with several clinical outcomes, including cardiovascular disease, diabetes and drug metabolism. We conducted a genome-wide association study in 619 healthy unrelated African Americans in an attempt to replicate reported findings in Europeans and Asians and to identify novel loci influencing total serum bilirubin levels. We analyzed a dense panel of over two million genotyped and imputed SNPs in additive genetic models adjusting for age, sex, and the first two significant principal components from the sample covariance matrix of genotypes. Thirty-nine SNPs spanning a 78 kb region within the UGT1A1 displayed P-values <5 × 10−8. The lowest P-value was 1.7 × 10−22 for SNP rs887829. None of SNPs in the UGT1A1 remained statistically significant in conditional association analyses that adjusted for rs887829. In addition, SNP rs10929302 located in phenobarbital response enhancer module was significantly associated with bilirubin level with a P-value of 1.37 × 10−11; this enhancer module is believed to have a critical role in phenobarbital treatment of hyperbilirubinemia. Interestingly, the lead SNP, rs887829, is in strong linkage disequilibrium (LD) (r2≥0.74) with rs10929302. Taking advantage of the lower LD and shorter haplotypes in African-ancestry populations, we identified rs887829 as a more refined proxy for the causative variant influencing bilirubin levels. Also, we replicated the reported association between variants in SEMA3C and bilirubin levels. In summary, UGT1A1 is a major locus influencing bilirubin levels and the results of this study promise to contribute to understanding of the etiology and treatment of hyperbilirubinaemia in African-ancestry populations
    corecore