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Quantum nondemolition measurements using a fully quantized parametric interaction
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A quantum nondemolition measurement based on a three-mode interaction mediated by a
second-order nonlinear susceptibility is discussed. All three modes are treated quantum mechani-
cally. The signal field is taken as one of the three modes and the probe field is the combined field in
the other two modes. If the probe system is initially in a number state, the interaction between the
signal and probe is equivalent to that between a harmonic oscillator and an angular momentum sys-
tem. Photon counting on the probe field realizes a quantum nondemolition measurement of the
square of a quadrature phase amplitude of the signal, and thus provides a direct measurement of
second-order squeezing.

I. INTRODUCTION

The recent consideration of gravitational radiation
detection schemes has generated considerable interest in
quantum nondemolition (QND), or back action evading
(BAE) schemes. The objective of such schemes is to mon-
itor very weak, or perhaps quantum limited, signals
without adding noise to the component of the signal car-
rying the desired information. Recently, there has been
some success in performing quantum nondemolition mea-
surements in the optical regime. La Porta et aI. ' and
Yurke have used a parametric down-converter to per-
form a QND measurement of the optical quadrature of a
signal mode. Bachor et al. have demonstrated the feasi-
bility of QND measurements in an optical-fiber ring reso-
nator. BAE techniques have also been suggested as a
means to generate superpositions of macroscopically
separated coherent states using the parametric conver-
sion process. These results complement those obtained
using four-wave mixing in optical fibers and similar
schemes to generate macroscopically distinguishable
coherent states.

The BAE measurements using parametric down-
conversion employ three-mode systems consisting of a
signal mode, a readout mode, and a strong, classical, non-
depleted coherent pump. Of interest is the case where we
fully quantize the pump fie1d, as we can then consider
pump-field states other than coherent states.

The natural way to fully quantize a three-mode system
is to treat as separate the signal mode interacting with a
two-mode probe. It is then possible to treat the two-
mode probe as a single quantum system. In fact we will
show that the probe may be treated as a spin system, us-

ing the boson representation of angular momentum.
This formalism simplifies a three-mode problem to the
conceptually simpler problem of the harmonic oscillator
coupled to an angular momentum system.

The usual quantum treatment of three modes treats
one of the modes, the pump, as being in a classical, non-
depleted coherent state. In this case, the parametric in-
teractions being considered simplify to an interaction be-

tween a signal and a one-mode probe field. It is systems
similar to these that are used to generate the normal BAE
measurements discussed in Refs. 1 and 2. It is of interest
to us to pump the crystal with a nonclassical pump. Us-
ing photon-number states, the two-mode probe system
may be transformed to an angular momentum system
with a total angular momentum equal to half the total
photon number in the two modes. As we will show, the
QND gain is controlled by this number. It may be possi-
ble to prepare such a probe state using feedback-
generated sub-Poissonian light. ' '

There are two feedback schemes which might be ap-
propriate. The first scheme takes the phase-reversed pho-
to current output from a photodetector and adds this
current to the dc bias current of the diode laser illuminat-
ing the detector. ' The usefulness of such a scheme de-
pends on the availability of a source appropriate for a
parametric interaction. A second, more versatile, scheme
involves placing an optoelectronic beam splitter between
a laser source and a photodetector and driving the beam
splitter with the output current of the photodetector in
such a way that the transmittivity decreases if the current
increases. Such a scheme has been analyzed in some de-
tail by Shapiro et ah. '

A variant of this scheme that reduces the photon-
number fluctuations in a single cavity mode would use
the current-driven beam splitter as the output from an
optical cavity driven by an intense coherent field. ' This
latter scheme is probably the most appropriate for the ap-
plication considered in this paper, and is indicated
schematically in Fig. 1.

We consider the ideal case in which one mode of the
two-mode probe is prepared in a number state, with a
very large photon-number occupancy (see Fig. 1). The
other mode of the probe is initially prepared in the vacu-
um state. The total probe photon number is conserved
and the probe-signal interaction will simply rotate the an-
gular momentum vector which describes the probe state.
It is the detection of this rotation that enables us to per-
form BAE measurements on the signal mode. This may
be achieved by photon counting on one of the probe
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probe b

which QND measurements are performed. The quadra-
ture components are defined for each mode as

coherent field X =—,'(a+a ), (2.1a)

probe a (a —at),
2

(2.1b)

signal

feedback line

FIG. 1. Schematic outline of our three-mode system. The
signal mode (c) is in some arbitrary initial state. The b mode is
prepared in a vacuum state. The a mode is in a feedback-
generated sub-Poissonian state and ideally will be the number
state ~X), with large 1V. The a and b modes together form a
two-mode probe. The probe-signal system interacts via a para-
metric interaction B=fiXJ„X,. Subsequent photon detection
performed on the b mode will condition the signal mode into a
near eigenstate of cos(irk', ).

modes at the output. We expect the reduced noise prop-
erties of this ideal number state pump to give an im-
proved signal-to-noise ratio for the BAE measurement of
a quadrature component of the signal mode.

Song and Caves have suggested the use of a paramet-
ric down-converter driven by a coherent pump to gen-
erate superpositions of two macroscopically distinguish-
able coherent states. In our model with a fully quantized
treatment and the pump field prepared in a number state,
multiple superpositions of coherent or squeezed states in
the signal mode may be prepared.

In Sec. II we first specify our three-mode Hamiltonian
and the SU(2) notation for the two-mode probe. The
Heisenberg equations of motion permit a heuristic under-
standing of the BAE measurement and the resulting
signal-mode superposition of squeezed states. In Sec. III
we obtain the signal-to-noise ratio (SNR) and show that
for this system, conditional photon counting is equivalent
to a measurement of second-order squeezing. We also
employ some additional correlation functions to investi-
gate the quality of our QND measurement scheme. In
Sec. IV we discuss photon counting in one of the modes
of the probe and show that this is equivalent to a deter-
mination of the angular momentum of the two-mode
probe. We then condition the signal mode based on the
result of the photon count. In Sec. V we explore the
effect of nonunit quantum photon detection eScency for
the system of interest. Throughout the paper the
response of the system to a general squeezed state input
signal is determined and the conditional probability dis-
tributions of the desired quadrature component of the
signal are plotted.

II. TWO-MODE SPIN HAMILTONIAN

We seek to model the interaction of three fully quan-
tized electromagnetic modes with annihilation operators
a, b, and c. Two of these modes, a and b, form our probe
spin system and the third, c, is the signal mode upon

where n designates the operators a, b, or c.
The Hamiltonian for three modes interacting via a

second-order nonlinearity may be written two ways, de-
pending on the frequency relationships of the fields,

8+ =Pi (atbc+ab ct),= x+
(2.2a)

H =Pi (atbct+ ah tc ),
2

(2.2b)

where y+ is proportional to the second-order nonlineari-
ty. For H+ we require co, —cob=co, and for H we re-
quire cob —co, =co, . If a is regarded as the annihilation
operator for the pump mode, H+ describes nondegen-
erate parametric amplification while H describes fre-
quency conversion.

One way to treat the fully quantized probe, (modes a
and b), is by introducing the Hermitian operators. '

J„=—,'(a b+ab ), (2.3a)

J = (atb ab ), — (2.3b)

J, =
—,'(a a bb), —

and the total probe photon number is

(2.3c)

A=a a+b b . (2.4)

These operators (Eq. 2.3) satisfy the usual SU(2) Lie alge-
bra of

[J,J ]=iJ, , (2.5)

together with cyclic permutations of x, y, and z. The
Casimir invariant for this group is

NJ
2

—+1
2

(2.6)

~ ~ ~

As J is invariant and depends only on X, then any sys-
tem Hamiltonian commuting with J will conserve N.
This will be satisfied in our case.

Using these operators gives insight into the structure of
H+ and H . Wehave

H+ =A'X+( J X, +Jy Y, ) . (2.7)

=A'(XJ X,—I Jy Y', ), (2.8)

Here we see that these three-mode Hamiltonians obvious-
ly commute with J, and hence always conserve the
probe photon number k We model our QND system by
an effective Hamiltonian,

H = ,'(H+ +H )—
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where we have defined the average value of second-order
nonlinearities and their difference as

x= —,'(x++x —»
r = ,'(x-+ —x-) .

(2.9a)

(2.9b)

J
d
d

X,

Y,

(2.10)

We are interested in a measurement of J„and therefore
have to solve a nonlinear system for I %0. The depen-
dence of J, in terms of signal-mode operators can be ob-
tained by noting

(J )= — —X' +—Y
dt ' dt I

(2.11)

for X, I Wo and hence

For the case where I =0, we are in a position to be able
to model QND detection of X', via measurements of the
probe operator conjugate to J, namely, J, .

Some insight into the system with I =0 can be gained
if mode a were treated as a classical nondepleted pump:
The total Hamiltonian in Eq. (2.8) (I =0) would be pro-
portional to X'bX', . This would enable a QND measure-
ment of the signal quadrature X', to be made by monitor-
ing the probe quadrature Yb. Such a scheme has indeed
been implemented by La Porta et aI. '

This measurement of J, is equivalent to measuring
8'b =b b, the b-mode photon number operator. This can
be seen as follows: We prepare the probe in an eigenstate
of 8' which commutes with J and is thus conserved.
Given such a state for modes a and b and a knowledge of
8; we only need measure either R, =a'a or Rb='b b to
effect a measurement of J, . We will consider 6'b measure-
rnents.

An equivalent conditioning measurement is used in
Ref. 5. Here a classical, nondepleted coherent pump is
used with a two-mode Hamiltonian 8=5'bX', . The QND
measurement is effected by photon counting on the b-
rnode probe, and serves to condition the c-mode signal
into near eigenstates of X', .

The Heisenberg equations of motion for the probe are

&b(t) =+[n, (t) —n, (0)]+&b(0) . (2.13)

For the case y=l we have that H=H+ -a~bc+abfc
and expect that nb(t) —n, (t) =const as the b- and c-mode
photons are created and destroyed in pairs. For the case
where g= —I we have H=H -a bc +ab c and ex-
pect that nb(t)+n, (t)=const as photons are exchanged
between the b and c modes.

We are interested in the case where g+ =y and I =0.
In this regime we see that

J,(t)= ——[X'', (t) —X'', (0)] . (2.14)

The interesting feature displayed here is that for small I,
we expect a rneasurernent of J, to condition the signal
mode into near eigenstates of X,(t) Th.is same feature
was found in Ref. 5.

For the case of I =0, the Heisenberg equations of
motion decouple and are solvable. We consider this case
for the rest of this paper, and the Heisenberg equations of
motion become

J„
d
dt

J,
When I =0, we

X, is a constant
Eq. 2.15 is

J
J (2.15)

o xX', o i,
have that (d Idt )(X', ) =0 and therefore
of motion. Noting this, the solution to

0 0 0
0 0

J (t)=J (0),
J (t)=cos(xtX, )J (0)—sin(xtX, )J,(0),

J,(t) =sin(XtX', )J (0)+cos(XtX, )J,(0) .

(2.16a)

(2.16b)

(2.16c)

lj,j—m &=I2j—m &.Im &, . (2.17)

As stated above, we prepare the probe in an eigenstate of
N, and have the initial state

I f;.&
=

I J,J & =—I». Io &,

Then the expectation value of J,(t) will be

(2.18)

Here we see the expected rotation of the probe operators
depending on the strength of the interaction yt and the
2, quadrature component of the signal field.

The eigenstates of J, are
I j,j—m & where j=N/2 and

m =0,1,2, . . . , 2j. In terms of the number states of
modes a and b this is

J,(t) =J,(0)——[X',(t) X,'(0)]——[—Y,'(t) —Y,'(0)], ( J,(t) &
=j(cos(XtX, ) & . (2.19)

Therefore, we expect that a readout of J, at time t will

yield information on the X, quadrature component as
previously indicated for the case I =0. (This is a little
like the number measurements using a~ah b discussed in
Milburn and Walls. '

) Indeed, as cos(XtX, ) is a mul-
tivalued function, a readout of J, must force the signal
mode c into a superposition of near eigenstates of J, . (A
similar superposition of states is obtained in Ref. 5 where
a classical nondepleted pump was used to generate a su-

(2.12a)

n, (t) =—[X,'(t) —X','(0)]+—[$",(t) —Y,'(0)]+R, (0) .

(2.12b)

These solutions display the expected (and known) behav-
ior for g=+I, where we have, respectively,
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N —2m
cos(Xtx ) = (2.20)

We will show that the probability distribution of X, does
indeed peak at the expected values of x. When yt «1
(the usual situation), Eq. (2.20) becomes

X
2m

N(Xr )' (2.21)

In this limit we expect the conditional probability distri-
bution for X'„given a result m for the b-mode photon
count, to be double peaked at +(2m /NX t )'~ .

perposition of two macroscopically distinguishable
coherent states. )

We expect that the conditional probability distribution
function for X', will reflect this superposition of states.
We see this in Eq. (2.19) where a readout of m photons in
the b mode will condition the c mode into near eigen-
states of X', (with eigenvalues x), satisfying the mul-
tivalued equation

the 4 of Eq. (3.3) is roughly half the value of that for the
balanced hornodyne detector. This gives this spin probe
system an efficiency (for large &X, &) roughly comparable
to direct photon detection of the c-mode signal. '

It is of interest to consider the case when &X, & =0.
Then we have that SBH~O reflecting the loss of the re-
ceived signal. However, we have that 4'~2 ' for
& X, & =0. This is because a measure of X, when
& X, & =0 is a measure of the quadrature noise in the sig-
nal mode. In a vacuum coherent state, &4, &

=—' and
&(bX, )&' =&2/4, giving a 4 of 1/&2. This same re-
sult applies for a general squeezed state when both the
signal &X, & and the variance & (b,X, ) & are squeezed by
the same factor.

The dependence of 4 on the variance of the square of
the X, operator raises the prospect of directly measuring
the higher-order squeezing' ' of the signal field.
Higher-order squeezing is said to occur when the higher
moments of the quadrature phase take on values less than
their coherent-state values. That is,

III. SIGNAL- TO-NOISE RATIO &(bX, )"
& ((n —1)!!(—,')" . (3.5)

It is of interest to compare the signal-to-noise ratio
(SNR) for this system, consisting of a probe (a two-mode
angular momentum system) and signal, with the SNR of
a balanced homodyne detector, for instance. Throughout
this section we employ the number state pump shown in
Eq. (2.18). In a later section we consider pump states
with increased photon-number fluctuations. We define
the SNR (4) as

& gg 2 &1/2
(3.1)

where b.R'b =R'i, —
& 8'b &. Writing 0, =cos(AX, ) and

~=yt, this gives

1 —&o, &

2 in[(1/N)(1 —&O,'&)+ &O', &
—&O, &']' '

Here, n is restricted to be even since the above condition
is uniquely nonclassical for the even moments.

As Hong and Mandel' point out, higher-order squeez-
ing might give particular benefits from the point of view
of noise reduction, because the higher-order moments
(n )2) suffer a larger fractional reduction. This is exactly
what we have seen, with a significantly enhanced SNR in
the small &X, & regime.

Recently, a number of quantities have been proposed
as a measure of the quality of a QND measurement.
The first of these quantities determines the degree of
correlation between the probe readout and the signal
QND variable 0, =cos(AX, ),

l&o'"&'"'& —&O'"&&J'"'&l'
C2(O m J out)

V(o in
) V(jout

)

It is noted that for large N the first term in the denomina-
tor will not contribute, and further for small ~&&1 we
can expand to first order, giving

V(O in)

—
& o,'&+ v(o ',")

(3.6)

(3.3)

We see that in the limit of large N, the signal-to-noise ra-
tio of the probe photon count is equal to the signal-to-

A.
noise ratio of the signal operator X „and thus for large N
the model permits a QND measurement of this operator.
The number X thus plays the role of QND gain. It is in-
teresting to compare S for X, to that for balanced homo-
dyne detection of X„'

(3.4)

We can compare these two S's for the case of a coherent
input signal. For a coherent state ~y & we have an expec-
tation value of X„&X,&= —,'(y+y*). For large &X, &,

where we write 0, =sin(AX, ), and V(o ',") is the variance
of 0'," for the initial state. For a perfect measurement
device the correlation coefficient is unity, and this is
achieved in the case where N becomes large. There are a
further two correlation coefficients of interest. The first
is a measure of the correlation between the signal input
field, and the signal output field, C (0',",0;"'), and is
equal to one as is expected for a perfect QND measure-
ment. The second provides an indication of how good
the system is as a signal-mode state preparation device.
The signal mode is conditioned into eigenstates of
0, =cos(i~X, ) and so we would expect the variance of
this quantity, conditioned on the probe readout, to be
zero for a good QND measurement. In fact, we have
V(O;"'~J;"')=0 for large X, and the signal-mode output
state is indeed in a near eigenstate of cos(AX, ). A near
eigenstate of cos(AX, ) is made up of a superposition of
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near eigenstates of X', as suggested by our previous
heuristic analysis. That this is so is shown by a large
variance in X', and we can show that V(X',"'lJ,"') is
nonzero and has a complicated dependence on the initial
signal state.

IV. CONDITIONAL MEASUREMENT

The b-mode photon detection will be performed on the
output state lg,„,). This is obtained by unitarily evolving

lg;„) under the influence of P. This unitary evolution is
equivalent to a rotation about the J axis by an amount
proportional to the signal quadrature phase amplitude.
We have

=f" dxe "'
lj,j)e x)&xly, ), (4.1)

C (~x)=
1/2

KX
cos

'N —m
KX

l Sln

m

(4.3)

are the rotation matrix elements depending on the eigen-
values of X, .

A photon detection measurement (6'b) is then per-
formed on the b mode of the probe. Due to the conserva-
tion of N, the total photon number, the measurement of
m photons in the b mode serves to project the probe into
the state

l j,j—m ). (Alternatively, if we have a classical
nondepleted pump, then lf,„,) is given by a two-mode
unitary evolution generated from the equivalent Hamil-
tonian XbX, . The output state will be a two-mode
squeezed state. The conditional measurement of 6'b will
then simply project the b mode into a number state with
the usual squeezed-state probability distribution, and, as
shown in Ref. 5, this measurement will condition the sig-
nal mode into a superposition of squeezed states. )

The conditional measurement of m photons in the b
mode would usually be treated using the simple projec-
tion operator lm ) b & m l. While this would be satisfacto-
ry for our immediate purposes in calculating the proba-
bility distribution of m, we will later be interested in tak-
ing the nonunit quantum efficiency of photon detection
into account. In addition, photon counting is usually
done destructively and, realistically, the counting of m
photons in the b mode will generally leave the b mode in
the vacuum state. We can easily take these effects into
account using the effects and operations formalism of
measurement theory.

The selective measurement of m photons in the b mode
can be described by an operation P on the original density

where we have used a resolution of identity in terms of
the eigenstates of X, . The c-mode input signal state is
written lP, ).

The rotation of the two-mode ljj) state is given in
terms of the usual rotation matrices. ' ' We have

N

10...&= y f«C. («)&xi&, &lj j m&l x—&, (42)
m=0

f'~ (m)= g g (1—g)
k=m

lk&„&kl .

(4.5)

It is evident that for q = 1, I ~
l
m ) & m l, which gives the

usual nondestructive projection operator. Equation (4.5)
has an obvious interpretation when we interpret g as the
probability of detecting a photon, and, conversely, 1—q
is the probability of not detecting a photon. For the case
of destructive photon counting, we have

1/2
k

I„(m)= g g (1—g)" lk —m)i, &kl .
k=m

(4.6)

Again for il= 1, we see that I ~ l0) b & m l, the expected
projection operator.

The probability of obtaining the result p™for the con-
ditioned system is given in terms of the effect F„(m),
where

P„(m) =tr, b, [pP~(m)] (4.7)

and

n (1—n)" Ik& &kl . (4.8)
k=m

The effect P„(m) does not depend on whether the mea-
surement of &b was destructive or not. To calculate
P„(m), we do not care about the final state of the b mode
and trace over all modes. However, the conditioned den-
sity matrix p in Eq. (4.4) is very dependent on the form
of the operation.

For the time being, we restrict our attention to the case
of g = 1, and the probability to detect I photons in mode
bis

Pi(m)=tr, i„(lm )1, &m l@ „,) & l/J, „,l)
=f" «lc. (Kx)l'l&xly, &l'. (4.9)

The rotation matrix factors
l
C (vx ) l

act as an envelope
for the X', probability distribution of the input state,

As an example, we consider the signal input state to
have a Gaussian wave function of the form

—(x —a) /4A
&x ly, ) =(z~S, )-'"e (4.10)

where n and 6, are the mean and variance, respectively,
of X', . The resulting photon count probability for a real
1S

matrix p, giving

p Wpitr(0p)

= f'„(m )pf' „(m )/tr(pp), (4.4)

where f'„(m) takes account of the nonunit quantum
efficiency of photon detection, g ~ 1, and whether the
measurement is destructive or not. For a QND, or non-
destructive counting of photons, we have

1/2
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N 2(N m) 2m t, [ (N —k —l)] p2
—2N( —1 )m k=0 1=o-
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(N —k —I)

2
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V. NONUNIT QUANTUM DETECTOR EFFICIENCY (5.1)

It is well known that even small levels of inefficiency in
the photodetector will wash out interference and coher-
ence effects. The system being considered here offers the
intriguing possibility that the noise introduced by non-
unit quantum efficiency can be partially overcome. This
results from the fully quantized treatment of the pump
mode which has been prepared in a number state with
very large photon-number occupancy (N))1). It turns
out that the inefficiencies in photon detection occur only
in terms proportional to X '. Hence, for large N, the
effect of the detector inefIiciencies is reduced.

This possibility of mitigating the effects of nonunit
quantum detector efficiency (i) & 1) by using the
reduced-noise properties of a number state pump suggests
we first discuss the effects of using generalized pump-
mode states such as might be produced using the feed-
back mechanisms of Fig. 1. These states have reduced
photon fluctuations below that of coherent pump states,
0& V(R', ) & (R', ). We introduce a generalized a-mode
pump state of

This state has mean photon number of X and
V(R', )=A¹ We see that a variation in A, over the range
[0,1] gives the desired range of reduction in the photon
fluctuation. Indeed, we see that for A, =O, the exponential
in Eq. (5.1) approximates a 5 function and p',"=~N ) (N ~.

For A, = 1, and noting for X» 1 that the photon-number
distribution is very narrowly peaked about the mean
value of X, the input pump state approximates that of a
diagonalized coherent state. The advantage of using this
pump-mode input state is that for X))1,we can closely
approximate the sums over k by integrals over the same
range. The effectiveness of this approximation is checked
by comparison to exact calculations later in this section.

We include the effects of nonunit quantum detector
efficiency (g & 1) by the well-known procedure of inter-
posing a beam splitter of transmittivity v i) between the
system and a perfect photodetector. The desired SNR as
defined in Eq. (3.1) is then

1 —&0, )
1/2

1& -2) 2(An+I —9) (-2& ~(1+A)+2(1-~)
N

(5.2)

where O, =cos(i~X, ) and V(O, ) is the variance of 0, .
We see here that for A. =O and g= 1 we reproduce Eq.
(3.2) for the photon-number state pump. For A, =O but

g & 1 we see that for large N, all the terms involving q in
the denominator do not contribute (for i) )0), and in this
regime for 0 & il & 1, S„ois independent of i).

Expanding the cos(i~X, ) terms in the above equation
(for v«1) gives insight into the relative importance of
the sizes of N, ~, g, and k. We have

based on (X, ) as above. For i)~0, we have that
4'0 &

—+0 as expected.
We can perform exact calculations for the pump mode

prepared in a number state and for certain generalized
mixed states. We are also interested in the probability
distribution for the signal-mode X, quadrature given
q&1.

From Eq. (4.7), with nonunit quantum efficiency i) & 1,
and for either a QND or destructive photon measure-
ment, we have the observed photon-count distribution of

(X,')

V(X', )+ " " &X',)+,&X,'&
1/2 ' P„(m)= g P, (k) (1 q)"—k

rn
(5.4)

(5.3)

Evidently, the efFects of inefFiciency in the photon detec-
tion process can be mitigated when XK g ))4 and
3Ni)))2ilA, —2il —1. For A, &[0,1] we see that the first
condition is sufficient to eliminate the dependence of S„z
on the photon detector inefficiency. For i)&[0,1] the
second condition breaks down only for values of A, ——,'N.
This corresponds to the input pump state having a
photon-number variance of V(n, ) —,'N, which is very—
broad. This result justifies in part the observability of the
results obtained in Ref. 5 where a classical nondepleted
coherent-state pump was used in a detection scheme

where Pi(k) is the calculated photon distribution in Eq.
(4.9). The probability distribution of the signal-mode X,
quadrature (with eigenvalue x) can be calculated from the
conditioned three-mode density matrix p™[Eq. (4.4)]
with number state pump giving

P„(x)=tr,„(~x ), (x ~p )/P„(m )

=P„'(m) i) s ™(I—i)s ) ~&x~y, &~

(5.5)

where s =sin(vx/2). In the limit as ii~1, Eq. (5.5)
reduces to Eq. (4.15) as expected.
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&& &= gm P„(m).
m=0

(5.6)
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the interaction Hamiltonian. For an input probe state of
~a, o), b, the interaction Hamiltonian acts like a two-
mode mixer. In this case the unitarily evolved output
state is

(5.12)

where a& =a cos(tcx l2) and a&= —

fact

sin(tax l2). The
probability distribution of X„given I measured photons
in the b mode and unit quantum efficiency, is

P (x)=[P(m)] '/(x /I)I, )/, ([a[s) e2 1

(5.13)

Song and Caves in Ref. 5 demonstrated a superposition of
two coherent states. This result can be seen in Eq. (5.13)
where we see the amplitude envelope for ~(x~P, ) ~

is
double peaked in the range x =0, and side peaks are
widely separated and of very low amplitude.

VI. CQNCLUSIC)N

In this paper we fully quantized the three-mode para-
metric interaction and considered the beneficial effects of
pumping this system with a number state. This allows us
to treat the system-probe interaction as rotations of the
angular momentum vector of the probe system. The de-
gree of rotation depends on the input distribution of the
signal-mode quadrature of interest. With this model in
mind, we can clearly see that any particular probe state

(specified by a direction in angular momentum space) is
generated by many particular values of the signal-mode
quadrature. We do a conditioning measurement on the
probe to locate this probe-state vector and condition the
signal-mode quadrature probability distribution. This
will peak at those values which generate (by rotation) the
measured probe state. This conditioning measurement is
equivalent to simple photon counting. Then the signal is
conditionally projected into a superposition of near eigen-
states of the quadrature of interest. These results are
similar to those obtained using a classical pump.

There are some beneficial noise effects obtained by us-
ing a number-state pump. We show this by an analysis of
the signal-to-noise ratio achieved by this system. In cer-
tain regimes, our system gives better results than can be
achieved by balanced homodyne detection. We give a
simple interpretation of these results in terms of higher-
order squeezing. Our conditioning measurement is
shown to be equivalent to a measurement of the noise in
the signal quadrature of interest. This higher-order mo-
ment of the signal mode has previously been shown to
have enhanced squeezing and hence beneficial signal-to-
noise ratios.

Finally, we show that using a number-state pump offers
intriguing possibilities in countering the effects of nonunit
quantum photon detection efficiency. For large number-
state occupancy of the pump mode we show that the
signal-to-noise ratio can be independent of the photon
detection efficiency. These results also apply for more
general pump states with reduced photon-number fluc-
tuation.
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