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A quantum nondemolition measurement based on a three-mode interaction mediated by a
second-order nonlinear susceptibility is discussed. All three modes are treated quantum mechani-
cally. The signal field is taken as one of the three modes and the probe field is the combined field in
the other two modes. If the probe system is initially in a number state, the interaction between the
signal and probe is equivalent to that between a harmonic oscillator and an angular momentum sys-
tem. Photon counting on the probe field realizes a quantum nondemolition measurement of the
square of a quadrature phase amplitude of the signal, and thus provides a direct measurement of

second-order squeezing.

I. INTRODUCTION

The recent consideration of gravitational radiation
detection schemes has generated considerable interest in
quantum nondemolition (QND), or back action evading
(BAE) schemes. The objective of such schemes is to mon-
itor very weak, or perhaps quantum limited, signals
without adding noise to the component of the signal car-
rying the desired information. Recently, there has been
some success in performing quantum nondemolition mea-
surements in the optical regime. La Porta et al.! and
Yurke? have used a parametric down-converter to per-
form a QND measurement of the optical quadrature of a
signal mode. Bachor et al.® have demonstrated the feasi-
bility of QND measurements in an optical-fiber ring reso-
nator. BAE techniques have also been suggested as a
means to generate superpositions of macroscopically
separated coherent states using the parametric conver-
sion process.* These results complement those obtained
using four-wave mixing in optical fibers’® and similar
schemes to generate macroscopically distinguishable
coherent states.®”®

The BAE measurements using parametric down-
conversion employ three-mode systems consisting of a
signal mode, a readout mode, and a strong, classical, non-
depleted coherent pump. Of interest is the case where we
fully quantize the pump field, as we can then consider
pump-field states other than coherent states.

The natural way to fully quantize a three-mode system
is to treat as separate the signal mode interacting with a
two-mode probe. It is then possible to treat the two-
mode probe as a single quantum system. In fact we will
show that the probe may be treated as a spin system, us-
ing the boson representation of angular momentum.’” !
This formalism simplifies a three-mode problem to the
conceptually simpler problem of the harmonic oscillator
coupled to an angular momentum system.

The usual quantum treatment of three modes treats
one of the modes, the pump, as being in a classical, non-
depleted coherent state. In this case, the parametric in-
teractions being considered simplify to an interaction be-
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tween a signal and a one-mode probe field. It is systems
similar to these that are used to generate the normal BAE
measurements discussed in Refs. 1 and 2. It is of interest
to us to pump the crystal with a nonclassical pump. Us-
ing photon-number states, the two-mode probe system
may be transformed to an angular momentum system
with a total angular momentum equal to half the total
photon number in the two modes. As we will show, the
QND gain is controlled by this number. It may be possi-
ble to prepare such a probe state using feedback-
generated sub-Poissonian light.!>!3

There are two feedback schemes which might be ap-
propriate. The first scheme takes the phase-reversed pho-
to current output from a photodetector and adds this
current to the dc bias current of the diode laser illuminat-
ing the detector.!? The usefulness of such a scheme de-
pends on the availability of a source appropriate for a
parametric interaction. A second, more versatile, scheme
involves placing an optoelectronic beam splitter between
a laser source and a photodetector and driving the beam
splitter with the output current of the photodetector in
such a way that the transmittivity decreases if the current
increases. Such a scheme has been analyzed in some de-
tail by Shapiro et al.'*

A variant of this scheme that reduces the photon-
number fluctuations in a single cavity mode would use
the current-driven beam splitter as the output from an
optical cavity driven by an intense coherent field.!> This
latter scheme is probably the most appropriate for the ap-
plication considered in this paper, and is indicated
schematically in Fig. 1.

We consider the ideal case in which one mode of the
two-mode probe is prepared in a number state, with a
very large photon-number occupancy (see Fig. 1). The
other mode of the probe is initially prepared in the vacu-
um state. The total probe photon number is conserved
and the probe-signal interaction will simply rotate the an-
gular momentum vector which describes the probe state.
It is the detection of this rotation that enables us to per-
form BAE measurements on the signal mode. This may
be achieved by photon counting on one of the probe
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FIG. 1. Schematic outline of our three-mode system. The
signal mode (c) is in some arbitrary initial state. The b mode is
prepared in a vacuum state. The a mode is in a feedback-
generated sub-Poissonian state and ideally will be the number
state |N ), with large N. The a and b modes together form a
two-mode probe. The probe-signal system interacts via a para-
metric interaction H =ﬁ)(f,j(\'c. Subsequent photon detection
performed on the b mode will condition the signal mode into a
near eigenstate of cos(kX,).

modes at the output. We expect the reduced noise prop-
erties of this ideal number state pump to give an im-
proved signal-to-noise ratio for the BAE measurement of
a quadrature component of the signal mode.

Song and Caves® have suggested the use of a paramet-
ric down-converter driven by a coherent pump to gen-
erate superpositions of two macroscopically distinguish-
able coherent states. In our model with a fully quantized
treatment and the pump field prepared in a number state,
multiple superpositions of coherent or squeezed states in
the signal mode may be prepared.

In Sec. IT we first specify our three-mode Hamiltonian
and the SU(2) notation for the two-mode probe. The
Heisenberg equations of motion permit a heuristic under-
standing of the BAE measurement and the resulting
signal-mode superposition of squeezed states. In Sec. III
we obtain the signal-to-noise ratio (SNR) and show that
for this system, conditional photon counting is equivalent
to a measurement of second-order squeezing. We also
employ some additional correlation functions to investi-
gate the quality of our QND measurement scheme. In
Sec. IV we discuss photon counting in one of the modes
of the probe and show that this is equivalent to a deter-
mination of the angular momentum of the two-mode
probe. We then condition the signal mode based on the
result of the photon count. In Sec. V we explore the
effect of nonunit quantum photon detection efficency for
the system of interest. Throughout the paper the
response of the system to a general squeezed state input
signal is determined and the conditional probability dis-
tributions of the desired quadrature component of the
signal are plotted.

II. TWO-MODE SPIN HAMILTONIAN

We seek to model the interaction of three fully quan-
tized electromagnetic modes with annihilation operators
a, b, and c¢. Two of these modes, a and b, form our probe
spin system and the third, ¢, is the signal mode upon

M. J. GAGEN AND G. J. MILBURN 43

which QND measurements are performed. The quadra-
ture components are defined for each mode as

X,=Ha+ah), (2.1a)

?a=_7i(a-—aT) ,

(2.1b)
where a designates the operators a, b, or c.

The Hamiltonian for three modes interacting via a
second-order nonlinearity may be written two ways, de-
pending on the frequency relationships of the fields,

i, =h%+—(a7bc +ab'e’), (2.2a)

H_ =ﬁx7‘(aTbc*+ach>, (2.2b)
where Y. is proportional to the second-order nonlineari-
ty. For H, we require , —w,=w, and for A_ we re-
quire w, —w, =w,. If a is regarded as the annihilation
operator for the pump mode, A + describes nondegen-
erate parametric amplification while H_ describes fre-
quency conversion.

One way to treat the fully quantized probe, (modes a
and b), is by introducing the Hermitian operators.> '

J.=La'b+ab", (2.3a)

I AP T

J, ——T(a b—ab'), (2.3b)

J,=Yala—b"p), (2.3¢0)
and the total probe photon number is

N=a'a+b" . (2.4)

These operators (Eq. 2.3) satisfy the usual SU(2) Lie alge-
bra of

7..7,1=i7, , 2.5)
together with cyclic permutations of x, y, and z. The
Casimir invariant for this group is

32=—]2! 12v~+1 ) (2.6)

As J 2 is invariant and depends only on N, then any sys-
tem Hamiltonian commuting with J?2 will conserve N.
This will be satisfied in our case.

Using these operators gives insight into the structure of
A + and H_. We have

B, =a.(JXFI,%,). 2.7

Here we see that these three-mode Hamiltonians obvious-
ly commute with J2, and hence always conserve the
probe photon number N. We model our QND system by
an effective Hamiltonian,

A A A

A=1A_ +0_

N

)
#(xJ X, —T7J,

S

v,

Il

(2.8)
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where we have defined the average value of second-order
nonlinearities and their difference as

(2.9a)
(2.9b)

x=3x++tx-),
=3x+—x-) .

For the case where I'=0, we are in a position to be able
to model QND detection of f via measurements of the
probe operator conjugate to Jx, namely, .7 .

Some insight into the system with I'=0 can be gained
if mode a were treated as a classical nondepleted pump:
The total Hamiltonian in Eq. (2.8) (I'=0) would be pro-
portional to 1? X This would enable a QND measure-
ment of the 51gna1 quadrature f to be made by monitor-
ing the probe quadrature ? Such a scheme has indeed
been implemented by La Porta et al.?

Thls measurement of J is equivalent to measuring
i, =b Th, the b-mode photon number operator. This can
be seen as follows: We prepare the probe in an eigenstate
of N which commutes with J2 and is thus conserved.
Given such a state for modes a and b and a knowledge of
N, we only need measure either i, =a fa or f,=b'b to
effect a measurement of J We will consider 7, measure-
ments.

An equivalent conditioning measurement is used in
Ref. 5. Here a classical, nondepleted coherent pump is
used with a two-mode Hamiltonian A ~.? . The QND
measurement is effected by photon countmg on the b-
mode probe, and serves to condition the c-mode signal
into near eigenstates of X,

The Heisenberg equations of motion for the probe are

T, -r7,7,
, —¥7.%,
417, |= |\, 2417, 2, 2.10)
X, —ir7,
Y. — X,

We are interested in a measurement of J,, and therefore
have to solve a nonlinear system for I'#50. The depen-
dence of J, in terms of signal-mode operators can be ob-
tained by noting

d » _
S J= 2.11)

S dr

l23+£?g]
roe’x

for x,I'#0 and hence

7.0=7,0)- X% X0 23(0)]—%[?3(:)—?3(0)1,
(2.12a)
ﬁb(t)=%[)?§(t)—z?2(0) [?2 —92(0)]+7,(0) .
(2.12b)

These solutions display the expected (and known) behav-
ior for y==T, where we have, respectively,
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Ay ()=%[n,()—n,(0)]+7,(0) . (2.13)

For the case y=TI we have that H=H | ~a'be+able!
and expect that n,(t)—n (¢)=const as the b- and c-mode
photons are created and destroyed in alrs For the case
where y=—T we have H=H _ ~a'bc T+ab'c and ex-
pect that n,(t)+n_ (t)=const as photons are exchanged
between the b and ¢ modes.

We are interested in the case where y, =~Y_ and ' =0.
In this regime we see that

J,(t>=—%[2§(t)—523(o>]. (2.14)
The interesting feature displayed here is that for small T,
we expect a measurement of J to condition the signal
mode into near eigenstates of X (¢). This same feature
was found in Ref. 5.

For the case of I'=0, the Heisenberg equations of
motion decouple and are solvable. We consider this case
for the rest of this paper, and the Heisenberg equations of
motion become

7] o o o |7

=

(U2 SR A VA (2.15)
.| o xX, o [||J,

When I'=0, we have that (d /dt)(X,)=0 and therefore

fc is a constant of motion. Noting this, the solution to

Eq. 2.15is
JI.(=7.(0), (2.16a)
7, (t)=cos(xtX,)J,(0)—sin(xtX,)7,(0) , (2.16b)
T, ()=sin(xtX,)J,(0)+cos(x1X, )T, (0) . (2.16c)

Here we see the expected rotation of the probe operators
depending on the strength of the interaction ¢ and the
X . quadrature component of the signal field.

The eigenstates of J are |j,j—m ) where j=N /2 and
m=0,1,2,...,2j. In terms of the number states of
modes a and b this is

lj,j—m)=12j—m),®m), . (2.17)
As stated above, we prepare the probe in an eigenstate of
N, and have the initial state

Y, =1j,j)=IN),®0), . (2.18)
Then the expectation value of J,(¢) will be
(F7,())y=j{cos(xtX,)) . (2.19)

Therefore, we expect that a readout of J at time ¢ will
yield information on the 1? quadrature component as
previously indicated for the case I'= 0 (Thls is a little
like the number measurements using a TabTb discussed in
Milburn and Walls.!®) Indeed, as cos()(t/? ) is a mul-
tivalued function, a readout of J must force the s1gnal
mode ¢ into a superposition of near eigenstates of ,?

similar superposition of states is obtained in Ref. 5 where
a classical nondepleted pump was used to generate a su-
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perposition of two macroscopically distinguishable
coherent states.)

We expect that the conditional probability distribution
function for fc will reflect this superposition of states.
We see this in Eq. (2.19) where a readout of m photons in
the b mode will condition the ¢ mode into near eigen-
states of fc (with eigenvalues x), satisfying the mul-
tivalued equation

N—2m
~—~

We will show that the probability distribution of )?C does
indeed peak at the expected values of x. When ytz <<1
(the usual situation), Eq. (2.20) becomes

cos(ytx )= (2.20)

2__ 2m
Xt=——
N(xt)
In this limit we expect the conditional probability distri-

bution for i}c, given a result m for the b-mode photon
count, to be double peaked at +(2m /Nx?t2)!/2,

(2.21)

III. SIGNAL-TO-NOISE RATIO

It is of interest to compare the signal-to-noise ratio
(SNR) for this system, consisting of a probe (a two-mode
angular momentum system) and signal, with the SNR of
a balanced homodyne detector, for instance. Throughout
this section we employ the number state pump shown in
Eq. (2.18). In a later section we consider pump states
with increased photon-number fluctuations. We define
the SNR (&) as

)
= an2yia

where AR, =f, —(#,).
K=Xt, this gives

(3.1

Writing O, =cos(kX,) and

§= 1=(0.) (3.2
[(1/N)1—(D2))+(D2)—(D,)*1'> ~

It is noted that for large N the first term in the denomina-
tor will not contribute, and further for small Kk <<1 we
can expand to first order, giving

RS $3
- <(A23)2>1/2 :

We see that in the limit of large N, the signal-to-noise ra-
tio of the probe photon count is equal to the signal-to-
noise ratio of the signal operator X 2, and thus for large N
the model permits a QND measurement of this operator.
The number N thus plays the role of QND gain. It is in-
teresting to compare & for X 2 to that for balanced homo-
dyne detection of X,,"”

o (R
BH <(Aj>c)2>1/2
We can compare these two §’s for the case of a coherent

input signal. For a coherent state |y ) we have an expec-
tation value of X,, (X.)=LX(y+y*). For large {X,),

(3.3)

(3.4)

M. J. GAGEN AND G. J. MILBURN 43

the & of Eq. (3.3) is roughly half the value of that for the
balanced homodyne detector. This gives this spin probe
system an efficiency (for large (X, )) roughly comparable
to direct photon detection of the c-mode signal.!”

It is of interest to consider the case when (X, )=0.
Then we have that §gy—0 reflecting the loss of the re-
ceived signal. However, we have that &—271/2 for
(X,)=~0. This is because a measure of X2 when
(,?c > =0 is a measure of the quadrature noise in the sig-
nal mode. In a vacuum coherent state, (X 2)=1 and
((AX 2))1/2=v2/4, giving a § of 1/V2. This same re-
sult applies for a general squeezed state when both the
signal (X 2) and the variance ((AX 2)?) are squeezed by
the same factor.

The dependence of & on the variance of the square of
the i’\c operator raises the prospect of directly measuring
the higher-order squeezing!”!® of the signal field.
Higher-order squeezing is said to occur when the higher
moments of the quadrature phase take on values less than
their coherent-state values. That is,

(AR <(n —1)M(L)" . 3.5)

Here, n is restricted to be even since the above condition
is uniquely nonclassical for the even moments.

As Hong and Mandel'® point out, higher-order squeez-
ing might give particular benefits from the point of view
of noise reduction, because the higher-order moments
(n >2) suffer a larger fractional reduction. This is exactly
what we have seen, with a significantly enhanced SNR in
the small (fc ) regime.

Recently, a number of quantities have been proposed
as a measure of the quality of a QND measurement.?®
The first of these quantities determines the degree of
correlation between the probe readout and the signal
QND variable 0, =cos(«xX, ),

(0 o) —(OIM(T ) 2
V(O My (T o)

CZ(O\ icn’jout):

z

V(o
. , (3.6)
L1 vA2 A in
N(OS>+V(OC)

where we write 63 =sin(«kX,), and V(O in) is the variance
of O in for the initial state. For a perfect measurement
device the correlation coefficient is unity, and this is
achieved in the case where N becomes large. There are a
further two correlation coefficients of interest. The first
is a measure of the correlation between the signal input
field, and the signal output field, C%(0 ",0 °"), and is
equal to one as is expected for a perfect QND measure-
ment. The second provides an indication of how good
the system is as a signal-mode state preparation device.
The signal mode is conditioned into eigenstates of
Oc=cos(Kfc) and so we would expect the variance of
this quantity, conditioned on the probe readout, to be
zero for a good QND measurement. In fact, we have
V(O 2T ) =0 for large N, and the signal-mode output
state is indeed in a near eigenstate of cos(kX .). A near
eigenstate of cos(K;Y\'C) is made up of a superposition of
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near eigenstates of 1? as suggested by our previous
heuristic analysis. That this is so is shown by a large
variance in X, and we can show that V(X 9%|J %) is
nonzero and has a complicated dependence on the initial
signal state.

IV. CONDITIONAL MEASUREMENT

The b-mode photon detection will be performed on the
output state |4,,, ). This is obtained by unitarily evolving
|4,,7 under the influence of A. Thls unitary evolution is
equivalent to a rotation about the J axis by an amount
proportional to the signal quadrature phase amplitude.
We have

—ik] X

[Youed =€ " [t

=[" dxe i Ve lx ) (xld, ) @.1)
where we have used a resolution of identity in terms of
the eigenstates of fc The c-mode input signal state is
written |¢, ).

The rotation of the two-mode |jj) state is given in
terms of the usual rotation matrices.”?! We have

(4.2)

N
[You) = 3 [ dx C,,(kx x| ) j,ji—m)®|x),

m =0
N 172 m
(kx)= |,
are the rotation matrix elements depending on the eigen-
values of X,

A photon detection measurement (f,) is then per-
formed on the b mode of the probe. Due to the conserva-
tion of N the total photon number, the measurement of
m photons in the b mode serves to project the probe into
the state |j,j —m ). (Alternatively, if we have a classical
nondepleted pump, then |¢,, ) is given by a two-mode
unitary evolution generated from the equivalent Hamil-
tonian X, bfc. The output state will be a two-mode
squeezed state.?? The conditional measurement of #, will
then simply project the b mode into a number state with
the usual squeezed-state probability distribution, and, as
shown in Ref. 5, this measurement will condition the sig-
nal mode into a superposition of squeezed states.)

The conditional measurement of m photons in the b
mode would usually be treated using the simple projec-
tion operator |m ),{m|. While this would be satisfacto-
ry for our immediate purposes in calculating the proba-
bility distribution of m, we will later be interested in tak-
ing the nonunit quantum efficiency of photon detection
into account. In addition, photon counting is usually
done destructively and, realistically, the counting of m
photons in the b mode will generally leave the b mode in
the vacuum state. We can easily take these effects into
account using the effects and operations formalism of
measurement theory.? %

The selective measurement of m photons in the b mode
can be described by an operation ¢ on the original density

N—m

C cos

m

i sin KX
2

KX
2

(4.3)
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matrix g, giving
"=¢p/tr($p)
=1, (m)pT [(m) /te(gp) , 4.4)

where f,,(m) takes account of the nonunit quantum
efficiency of photon detection, <1, and whether the
measurement is destructive or not. For a QND, or non-
destructive counting of photons, we have

- 172
£ OND()= 5 kY, <kl

k=m

m nm(l_n)k—m

4.5)

It is evident that for =1, ' —|m ){m|, which gives the
usual nondestructive projection operator. Equation (4.5)
has an obvious interpretation when we interpret 7 as the
probability of detecting a photon, and, conversely, 1—7
is the probability of not detecting a photon. For the case
of destructive photon counting, we have

k 172

m(1—mq)k—m lk—m), (k| .

-2,
(4.6)

Again for n=1, we see that T —|0),{m|, the expected
projection operator.

The probablhty of obtaining the result 5™ for the con-
ditioned system is given in terms of the effect F (m),
where

P, (m)=tr,[pF,(m)] 4.7)
and
ﬁ,,(m)zfl,(m)r,,(m)
2 (1= Tk ), k] (4.8)

The effect ﬁ ) does not depend on whether the mea-
surement of ﬁb was destructive or not. To calculate
P,(m), we do not care about the final state of the b mode
and trace over all modes. However, the conditioned den-
sity matrix p" in Eq. (4.4) is very dependent on the form
of the operation.

For the time being, we restrict our attention to the case
of =1, and the probability to detect m photons in mode
bis

Pl(m)=trabc(!m >b<m |¢om><¢oml)

= [7 ax|C,(kx)P[{x g1 . 4.9)

The rotation matrix factors |C,, (xx )|? act as an envelope
for the ,«?C probability distribution of the input state,
(x|

As an example, we consider the signal input state to
have a Gaussian wave function of the form

(x—a)?/4A

(x|¢,Y=02mA,) V% c (4.10)

where a and A, are the mean and variance, respectively,
of 1’\> The resultlng photon count probability for a real
is
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2m

l

. 2AN—m) 2m
274 (="
k=0 I=0

2N —m)
k

N
P,(m)= [m

It is of interest to note that this probability distribution is
cyclic in «, the real coherent-state displacement, and is
unchanged for a’=a=®(2rnw/k) for integral n. This is a
direct consequence of the amplitude envelope |C,, (kx)|?
being fully periodic for all values of x. The probe
photon-number distribution depends on the relative posi-
tioning of the input probability amplitude |{x |4, )|? and
the amplitude envelope |C,,(xx)|? and not on the abso-
lute value of a. (Of course, the signal-mode photon-
number distribution is very different for different a.)

In Fig. 2 we plot P(m) versus m for N=15, a=0, and
A,=1.0 for various values of k. This gives some insight
into the physical processes at work. There are three re-
gimes of physical interest in this distribution. When
k=0, the interaction is turned off, and naturally
P,(m)=3§,,,. The next regime is with x <<1 where we see
that there is a decaying probability of observing a large
photon count in the b mode. This is the regime in which
all possible experiments will operate. Finally, we see that
if x is sufficiently strong, then the only contributions to
the double sum in Eq. (4.11) will come from terms where
N=k+I. The contributions to this sum will maximize
for values of m of either m =0 or m =N. This can be
seen in Fig. 2, where for large «, the photon count proba-
bility distribution is symmetric about a minimum at
m=N /2.

Physically, the distributions for k <<1 and «>>1 can
be understood by considering in more detail the unitary
evolution operator

U=e ~1K4?CJX

= [ dxlx)(xle ™
=fm dxlx)(xIeiq(abua#b) , (4.12)

where q‘=(Kx )/2. As mentioned above, the unitary evo-

FIG. 2. The photon-number probability distribution for the
conditioning measurement of the b mode. The signal mode is
prepared in a phase squeezed state. The strength of the para-
metric interaction is given by «. The total number of probe
photons is N=15. These values of k and N are chosen to
demonstrate the ranges Nk? << 1 and N«?>>1.

(—cos[ka(N—k—1)]exp | —
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KA,
2

(N—k—1)? 4.11)

lution of this system can be considered as a rotation in
angular momentum space, or, alternatively, as a two-
mode mixing operator.?? In either case the physical in-
terpretation of these operators can be easily understood
when the signal mode is prepared in some near eigenstate
of X,. In this case there will be only one contribution to
the integral in Eq. (4.12), and the output state |,,,) will
show all the features of a unitarily mixed two-mode state.
This includes the usual cyclic projection of the two-mode
probe from the state |N,0) at ‘‘times” g=nm
(n=0,1,2,...), to the state |0, N ) at “times” g=(nm/2)
(n=1,3,5,...). When the signal mode is not prepared in
some near eigenstate of /?c, then the integral in Eq. (4.12)
will generate a weighted average of all possible rotations
or mixing of the two-mode probe state. For xk<<1, and
for a squeezed vacuum input, the amplitude of the contri-
bution at g =7 /2 (in the state |0, N )) will be neglible and
we see the decaying probability seen in Fig. 2. However,
for k>>1, there will be many sizable contributions from
both of the states |[N,0) and |0,N ), as well as all other
possible states that maintain the total photon number.
However, the probability amplitude of all these contrib-
uting states will be of order unity only for the above two
states. The contributions to the probability amplitudes
for the other states will be small for large N. We then see
a double-winged probability distribution as depicted in
Fig. 2.

The conditioned density matrix for the ¢ mode given m
readout photons, unit quantum efficiency, and destructive
photon counting is

ﬁ:'n=trab(|m )b(m l¢out)(¢out|)/Pl(m)

=le)(ol, (4.13)
where the state of the conditioned signal mode is
[y =[Py(m)] 7' [ 7 dx C,y(kx ) {x o) |x) .
4.14)

The resulting c-mode probability distribution for the fc
quadrature component (with value x) is

P™x)=[P,(m)] !C,, (kx)2[{x|d ) |* . (4.15)

The rotation matrix factor |C,, («x)|? acts as an ampli-
tude envelope for the (generally) Gaussian input probabil-
ity distribution |{x|¢.)|% For large N, |C,, (kx )| can be
a very sharply peaked function of x. The peaks of this
function occur for values of x  satisfying
cos(kx )=(N —2m)/N exactly as required from our pre-
vious heuristic analysis.

As an example, we compute the conditional distribu-
tion in Eq. (4.15) for the Gaussian state [Eq. (4.10)]. In
the case «=0 and A, <1, this is a squeezed vacuum state
with reduced fluctuations in X,. In the region x ~0 and
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for large N, |Cy(kx)|? is a sharply peaked function of half
width A=~(8/k*N)!/? (for small k). The input distribu-
tion [Eq. (4.10)] has half width A, =[8A In(2)]'/2 For
cases where A <A;, we expect the signal mode to be fur-
ther squeezed. Typically achievable values of k are very
small (e.g., k=Xt~ 1073 and so we are interested in re-
gimes with N very large (e.g., N > 10'%). The systems en-
visaged use a second-order nonlinearity y~50-500 s~!
(e.g., for KDP) (Ref. 26) and an interaction time of the
order of 107!' s. If we consider a classical coherent
pump state in the mode with |a|?>~N =~ 10'%, we achieve a
typical interaction strength of ayt =0.5.

The |C,, (kx)|? envelope is multivalued and has side
peaks at values [given by Eq. (2.20)] of x =nw/k, for
N >>m, and n=0,2,4,.... For small k these peaks are
widely separated and for squeezed input states (with nar-
row X, probability distributions), we expect very low am-
plitude for the sideband superposition peaks. Conversely,
for very broad input x distributions (for example, states
in which ?c is squeezed), then the conditioned signal
mode would be in a superposition of amplitude squeezed
states.

That this is so can be seen in plots of the conditioned
probability distributions for the )?c quadratuare of the
signal mode. These conditions are illustrated in Figs.
3-5, where we again use the analogous regime of N=15
and 0=« <5. In Fig. 3 we show the case when the mea-
sured b-mode photon count is zero (m =0). The signal-
mode input state /?c distribution is shown at the point
x=0 (the interaction is turned off). The input signal state
is a squeezed vacuum with A, > 1. The values of N, m, &,
and A, are chosen to illustrate features of the probability
distributions, and are just indicative of the distributions
obtained using more physically reasonable parameters.

The two dominant features of the distribution in Fig. 3

P

N
{

FIG. 3. The conditioned probability distribution for the
signal-mode quadrature X,. The signal mode is prepared in a
squeezed state with V(X,)> % (seen when k=0). The strength
of the parametric interaction («x) and the total probe photon
number (N=15) are chosen to be illustrative. (Here, M =0
photons are measured in the b mode.) Note the enhanced
squeezing of the distributions for strong «, and the presence of
the side peaks showing the expected superposition of squeezed
states.
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(and subsequent figures) are the enhanced squeezing for
strong « in all the peaks and the multiple side peaks
which lie on values of x satisfying cos(kx )=(N —2m )/N.
In addition, each of these side peaks together with the
central peak undergoes a further splitting for m > 0. This
is reminiscent of the superpositions of macroscopic
coherent states displayed in Ref. 5, where classical pump-
ing was employed, and occurs for a similar reason. In
Ref. 5, Song and Caves showed that this superposition of
states results from a measurement of X 3, and, therefore,
the conditioned X, distribution will center on positive
and negative values. Our measurement of 7, for small «
is equivalent to a measurement of X 2 and we expect a
similar repeated double-peak structure. The new feature
is the presence of many sideband superpositions. The
conditioned signal mode is in a superposition of many
squeezed states. (Note that for m >0 in Fig. 4 there is
zero probability of obtaining a photon count of m >0 for
an interaction strength of k=0. Hence, the k=0 line in
these figures is always equal to zero.)

(b)

h\jllllllllllllllllll!

|

FIG. 4. The conditioned probability distribution for the
signal-mode quadrature )?c given a measurement of (a) m=1
and (b) m=5 photons in the b mode of the probe. The strength
of the parametric interaction («) and the total photon number
(N =15) are chosen to be illustrative. The new feature is the
presence of double peaks for m70. This results from the
double-valued nature of a measurement of (X 2). In (b) with
m=5, we see the peaks separating as expected for increasing m.
The peaks lie at points satisfying cos(kx )=(N —m)/m.
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V. NONUNIT QUANTUM DETECTOR EFFICIENCY

It is well known that even small levels of inefficiency in
the photodetector will wash out interference®” and coher-
ence effects.” The system being considered here offers the
intriguing possibility that the noise introduced by non-
unit quantum efficiency can be partially overcome. This
results from the fully quantized treatment of the pump
mode which has been prepared in a number state with
very large photon-number occupancy (N >>1). It turns
out that the inefficiencies in photon detection occur only
in terms proportional to N ~!. Hence, for large N, the
effect of the detector inefficiencies is reduced.

This possibility of mitigating the effects of nonunit
quantum detector efficiency (n<1) by using the
reduced-noise properties of a number state pump suggests
we first discuss the effects of using generalized pump-
mode states such as might be produced using the feed-
back mechanisms of Fig. 1. These states have reduced
photon fluctuations below that of coherent pump states,
0=V¥V(a,)=<(A,). We introduce a generalized a-mode
pump state of

1—<0,)
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PI—(QmAN) 2 S, kIR ) (k]
k=0

(5.1)

This state has mean photon number of N and
V(fi,)=AN. We see that a variation in A over the range
[0,1] gives the desired range of reduction in the photon
fluctuation. Indeed, we see that for A =0, the exponential
in Eq. (5.1) approximates a 8 function and pi’=|N )(N/|.
For A=1, and noting for N >>1 that the photon-number
distribution is very narrowly peaked about the mean
value of N, the input pump state approximates that of a
diagonalized coherent state. The advantage of using this
pump-mode input state is that for N >>1, we can closely
approximate the sums over k by integrals over the same
range. The effectiveness of this approximation is checked
by comparison to exact calculations later in this section.

We include the effects of nonunit quantum detector
efficiency (7<1) by the well-known procedure of inter-
posing a beam splitter of transmittivity V' between the
system and a perfect photodetector. The desired SNR as
defined in Eq. (3.1) is then

nA

v(0,)+2=L(p2y—22nt1=m) 52y
N Nq

where O, =cos(kX,) and V(0,) is the variance of 0..
We see here that for A=0 and =1 we reproduce Eq.
(3.2) for the photon-number state pump. For A=0 but
1 <1 we see that for large N, all the terms involving 7 in
the denominator do not contribute (for 1> 0), and in this
regime for0<n <1, c?nyg\ is independent of 7.

Expanding the cos(kX_) terms in the above equation
(for k << 1) gives insight into the relative importance of
the sizes of N, k, , and .. We have

(X2)
Saa A —29—1 4 v
VRH+EE S (R +——(X2)
3N7n Nk

(5.3)

Evidently, the effects of inefficiency in the photon detec-
tion process can be mitigated when N«?y>>4 and
3Ny>2nA—2n—1. For AE[0,1] we see that the first
condition is sufficient to eliminate the dependence of & ;
on the photon detector inefficiency. For nn&€[0,1] the
second condition breaks down only for values of A~ 3N.
This corresponds to the input pump state having a
photon-number variance of V(#,)~3N?, which is very
broad. This result justifies in part the observability of the
results obtained in Ref. 5 where a classical nondepleted
coherent-state pump was used in a detection scheme
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n(1+A)+2(1—x)

Nq

f

based on </?§) as above. For 7—0, we have that
&8o,2—0 as expected.

We can perform exact calculations for the pump mode
prepared in a number state and for certain generalized
mixed states. We are also interested in the probability
distribution for the signal-mode X, quadrature given
n<l.

From Eq. (4.7), with nonunit quantum efficiency 7 <1,
and for either a QND or destructive photon measure-
ment, we have the observed photon-count distribution of

P, (m)= 3 Pi(k) |— |(1—q)* g™, (5.4)
k=m

where P,(k) is the calculated photon distribution in Eq.
(4.9). The probability distribution of the signal-mode X,
quadrature (with eigenvalue x) can be calculated from the
conditioned three-mode density matrix p" [Eq. (4.4)]
with number state pump giving

Pr(x)=tr,(|x ) (x|p™) /P, (m)

N
nm:g-Zm(l_n?Z)N*ml(x‘(ﬁc)lZ ,

=P, '(m)|

n

(5.5)

where §=sin(kx /2). In the limit as n—1, Eq. (5.5)
reduces to Eq. (4.15) as expected.
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The nonunit quantum efficiency (1) only appears twice
in this equation. The first appearance is a nonessential
amplitude factor. The effect of the second 1 can be more
than compensated for by making N large for small « as
suggested by the signal-to-noise ratio for 1y < 1. This ratio
depends, as usual, on the averages of various powers of
the measurement variable 7,. That is,

(Ag)=3 m*P,(m). (5.6)
m=0
An exact calculation of the SNR for a number-state input
duplicates the results of Eq. (5.2).

We show examples of the conditioned }?c probability
distribution for 7 <1 in Fig. 5 (with number-state pump).
Using the analogous values of N=15, 0=« =5 in Fig.
5(a), with p=0.5, we see that there is very little loss of
definition. In Fig. 5(b) with n=0.1, we begin to see a loss
of features. This regime has Nk*n~6 for k=2. In the
physically reasonable regimes with N ~10', x~1078,
then the beneficial noise properties of a number-state
pump might offer a means to allow for the effects of the
nonunit quantum efficiency of photon detection.

The cause of this mitigation in the effects of detector

[e]
| u
G)\IIIIIIIIIIJIIIIIIIAJ

FIG. 5. The conditioned probability distribution for the
signal-mode quadrature X. with a nonunit quantum efficiency
(7<1). The strength of the parametric (k) and the total probe
photon number are chosen to be illustrative. In (a) we show
n=0.5. There is practically no loss of definition in the features
compared to Fig. 1. Only in (b), with 7=0.1, do we begin to see
a smearing of the peaks. This illustrates that the effects of 7 can
be mitigated if Nw?n>>1.
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inefficiencies is the reduced-pump-noise properties when
we prepare the pump in a number state. It is of interet to
calculate exactly the effects of preparing the pump mode
in a mixture of number states. We set the initial pump-
mode density matrix as
piL=T Pilk), (k| . (5.7)
k=0
All the previous derivations follow routinely, including
contributions from the initial mixture of states in the
pump probe. In particular, for unit quantum efficiency
(p=1), we have a probability distribution for counting m
photons in the b mode [see Eq. (4.9)]:

Pl(m)= E P]?trabc(im >b<m|p§ut)
k=0

= [ ax|c, (kx)P[{x g (5.8)
The form of this equation is identical to that of Eq. (4.9).
The only difference is the redefined matrix elements

2m

© |k
> | (5.9
k=m

|C, (kx)|*=

o |l

P,

where 5 =sin(kx /2) and ¢ =cos(kx /2).

Here, it is seen that the only possible contributions to a
measurement of m photons in the b state come from only
those pump-mode states with at least m photons in them.
In the case where P{=358,y, then the previous rotation
matrix elements in Eq. (4.3) are obtained. The form of all
our previous results is unchanged except that we now use
these modified rotation matrices.

A particular example is to take a normalized and Pois-
son input number-state distribution in the @ mode. Here

we set
laf? |a|2k

k!

for some |a|?=N. This pump state is roughly equivalent
to that of Eq. (5.1) in the limit A=1, N=|a|*>>1. Then
we see that

Pi=e (5.10)

€2 (kx ) 2= L (|afs)2me —(lais? | (5.11)
m!

where $=sin(kx /2). The exponential in these rotation
matrices is interesting in that it is guaranteed to be equal
to one whenever =0 and this occurs periodically along
the x axis. For points where 570, and with |a|? a large
number, then the rotation matrix elements will tend to
zero. And it is these elements which serve as an ampli-
tude envelope for the input |{x|#,)|? distribution. Su-
perpositions of states will still occur but they will be
widely spaced and extremely narrow—that is, highly
squeezed.

Throughout this paper we have been relating results
obtained for a number-state pump with those of the clas-
sical nondepleted pump. The results of Eq. (5.11) are in-
termediate between using a number-state pump and using
a coherent-state pump. A classical nondepleted pump is
different again in that it is restricted from evolving under
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the interaction Hamiltonian. For an input probe state of
la,0), 5, the interaction Hamiltonian acts like a two-
mode mixer.?? In this case the unitarily evolved output
state is

|¢out>= fdx(x |¢c>|al’a2’x ) )

where a;=acos(kx /2) and a,= —iasin(kx/2). The
probability distribution of X, given m measured photons
in the b mode and unit quantum efficiency, is

PTC)=[P(m)) ™ [Cx1g, )P~ lals)?me ~(ei7"

(5.12)

(5.13)

Song and Caves in Ref. 5 demonstrated a superposition of
two coherent states. This result can be seen in Eq. (5.13)
where we see the amplitude envelope for |{(x|¢ )|? is
double peaked in the range x =0, and side peaks are
widely separated and of very low amplitude.

VI. CONCLUSION

In this paper we fully quantized the three-mode para-
metric interaction and considered the beneficial effects of
pumping this system with a number state. This allows us
to treat the system-probe interaction as rotations of the
angular momentum vector of the probe system. The de-
gree of rotation depends on the input distribution of the
signal-mode quadrature of interest. With this model in
mind, we can clearly see that any particular probe state
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(specified by a direction in angular momentum space) is
generated by many particular values of the signal-mode
quadrature. We do a conditioning measurement on the
probe to locate this probe-state vector and condition the
signal-mode quadrature probability distribution. This
will peak at those values which generate (by rotation) the
measured probe state. This conditioning measurement is
equivalent to simple photon counting. Then the signal is
conditionally projected into a superposition of near eigen-
states of the quadrature of interest. These results are
similar to those obtained using a classical pump.

There are some beneficial noise effects obtained by us-
ing a number-state pump. We show this by an analysis of
the signal-to-noise ratio achieved by this system. In cer-
tain regimes, our system gives better results than can be
achieved by balanced homodyne detection. We give a
simple interpretation of these results in terms of higher-
order squeezing. Our conditioning measurement is
shown to be equivalent to a measurement of the noise in
the signal quadrature of interest. This higher-order mo-
ment of the signal mode has previously been shown to
have enhanced squeezing and hence beneficial signal-to-
noise ratios.

Finally, we show that using a number-state pump offers
intriguing possibilities in countering the effects of nonunit
quantum photon detection efficiency. For large number-
state occupancy of the pump mode we show that the
signal-to-noise ratio can be independent of the photon
detection efficiency. These results also apply for more
general pump states with reduced photon-number fluc-
tuation.
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