106 research outputs found

    Investigation of the existence of city-scale three-dimensional macroscopic fundamental diagrams for bi-modal traffic

    Get PDF
    Recent research has demonstrated that the Macroscopic Fundamental Diagram (MFD) is reliable and practical tool for modeling traffic dynamics and network performance in single-mode (cars only) urban road networks. In this paper, we first extend the modeling of the single-mode MFD to a bi-modal (bus and cars) one. Based on simulated data, we develop a three-dimensional MFD (3D-MFD) relating the accumulation of cars and buses, and the total circulating flow in the network. We propose an exponential function to capture the shape of the 3D-MFD, which shows a good fit to the data. We also propose an elegant estimation for passenger car equivalent of buses (PCU), which has a physical meaning and depends on the bi-modal traffic in the network. Moreover, we analyze a 3D-MFD for passenger network flows and derive its analytical function. Finally, we investigate an MFD for networks with dedicated bus lanes and the relationship between the shape of the MFD and the operational characteristics of buses. The output of this paper is an extended 3D-MFD model that can be used to (i) monitor traffic performance and, (ii) develop various traffic management strategies in bi-modal urban road networks, such as redistribution of urban space among different modes, perimeter control, and bus priority strategies

    Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings

    Get PDF
    A field experiment in Yokohama (Japan) reveals that a macroscopic fundamental diagram (MFD) linking space-mean flow, density and speed exists oil a large urban area. The experiment used a combination of fixed detectors and floating vehicle probes as sensors. It was observed that when the somewhat chaotic scatter-plots of speed vs. density from individual fixed detectors were aggregated the scatter nearly disappeared and points grouped neatly along a smoothly declining curve. This evidence suggests, but does not prove, that all MFD exists for the complete network because the fixed detectors only measure conditions in their proximity, which may not represent the whole network. Therefore, the analysis was enriched with data from GPS-equipped taxis, which covered the entire network. The new data were filtered to ensure that only full-taxi trips (i.e., representative of automobile trips) were retained in the sample. The space-meal] speeds and densities at different times-of-day were then estimated for the whole Study area using relevant parts of the detector and taxi data sets. These estimates were still found to lie close to a smoothly declining curve with deviations smaller than those of individual links - and entirely explained by experimental error. The analysis also revealed a fixed relation between the space-mean flows on the whole network, which are easy to estimate given the existence of an MFD, and the trip completion rates, which dynamically measure accessibility
    • …
    corecore