9 research outputs found

    Molecular basis of native inward rectifier currents : role of Kir2 subunits

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal

    Kir2.4 and Kir2.1 K+ channel subunits co-assemble: a potential new contributor to inward rectifier current heterogeneity

    No full text
    Heteromeric channel assembly is a potential source of physiological variability. The potential significance of Kir2 subunit heterotetramerization has been controversial, but recent findings suggest that heteromultimerization of Kir2.1-3 may be significant. This study was designed to investigate whether the recently described Kir2.4 subunit can form heterotetramers with the important subunit Kir2.1, and if so, to investigate whether the resulting heterotetrameric channels are functional. Co-expression of either dominant negative Kir2.1 or Kir2.4 subunits in Xenopus oocytes with either wild-type Kir2.1 or 2.4 strongly decreased resulting current amplitude. To examine physical association between Kir2.1 and Kir2.4, Cos-7 cells were co-transfected with a His6-tagged Kir2.1 subunit (Kir2.1-His6) and a FLAG-tagged Kir2.4 subunit (Kir2.4-FLAG). After pulldown with a His6-binding resin, Kir2.4-FLAG could be detected in the eluted cell lysate by Western blotting, indicating co-assembly of Kir2.1-His6 and Kir2.4-FLAG. Expression of a tandem construct containing covalently linked Kir2.1 and 2.4 subunits led to robust current expression. Kir2.1-Kir2.4 tandem subunit expression, as well as co-injection of Kir2.1 and Kir2.4 cRNA into Xenopus oocytes, produced currents with barium sensitivity greater than that of Kir2.1 or Kir2.4 subunit expression alone. These results show that Kir2.4 subunits can co-assemble with Kir2.1 subunits, and that co-assembled channels are functional, with properties different from those of Kir2.4 or Kir2.1 alone. Since Kir2.1 and Kir2.4 mRNAs have been shown to co-localize in the CNS, Kir2.1 and Kir2.4 heteromultimers might play a role in the heterogeneity of native inward rectifier currents

    Effects of flecainide and quinidine on Kv4.2 currents: voltage dependence and role of S6 valines

    No full text
    1. The effects of flecainide and quinidine were studied on wild-type Kv4.2 channels (Kv4.2WT), channels with deletion of the N-terminal domain (N-del) and channels with mutations in the valine residues located at positions 402 and 404 in the presence (V[402,404]I) or in the absence (N-del/V[402,404]I) of the N-terminus. 2. The experiments were performed at 37°C on COS7 cells using the whole-cell configuration of the patch-clamp technique. 3. Flecainide and quinidine inhibited Kv4.2WT currents in a concentration-dependent manner (IC(50)=23.6±1.1 and 12.0±1.4 μMat +50 mV, respectively), similar to their potency for the rest of the constructs at the same voltage. In Kv4.2WT channels, flecainide- and quinidine-induced block increased as channel inactivation increased. In addition, the inhibition produced by quinidine, but not by flecainide, increased significantly at positive test potentials. Similar effects were observed in N-del channels. However, in V[402,404]I and N-del/V[402,404]I channels, the voltage dependence of block by both quinidine and flecainide was lost, without significant modifications in potency at +50 mV. 4. These results point to an important role for S6 valines at positions 402 and 404 in mediating voltage-dependent block by quinidine and flecainide
    corecore