36 research outputs found

    Attachment site selection of ticks on roe deer, Capreolus capreolus

    Get PDF
    The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May–August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed

    A Diverse Group of Previously Unrecognized Human Rhinoviruses Are Common Causes of Respiratory Illnesses in Infants

    Get PDF
    Human rhinoviruses (HRVs) are the most prevalent human pathogens, and consist of 101 serotypes that are classified into groups A and B according to sequence variations. HRV infections cause a wide spectrum of clinical outcomes ranging from asymptomatic infection to severe lower respiratory symptoms. Defining the role of specific strains in various HRV illnesses has been difficult because traditional serology, which requires viral culture and neutralization tests using 101 serotype-specific antisera, is insensitive and laborious.To directly type HRVs in nasal secretions of infants with frequent respiratory illnesses, we developed a sensitive molecular typing assay based on phylogenetic comparisons of a 260-bp variable sequence in the 5' noncoding region with homologous sequences of the 101 known serotypes. Nasal samples from 26 infants were first tested with a multiplex PCR assay for respiratory viruses, and HRV was the most common virus found (108 of 181 samples). Typing was completed for 101 samples and 103 HRVs were identified. Surprisingly, 54 (52.4%) HRVs did not match any of the known serotypes and had 12-35% nucleotide divergence from the nearest reference HRVs. Of these novel viruses, 9 strains (17 HRVs) segregated from HRVA, HRVB and human enterovirus into a distinct genetic group ("C"). None of these new strains could be cultured in traditional cell lines.By molecular analysis, over 50% of HRV detected in sick infants were previously unrecognized strains, including 9 strains that may represent a new HRV group. These findings indicate that the number of HRV strains is considerably larger than the 101 serotypes identified with traditional diagnostic techniques, and provide evidence of a new HRV group

    The Urban Environment and Childhood Asthma (URECA) birth cohort study: design, methods, and study population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence and morbidity of wheezing illnesses and childhood asthma is especially high in poor urban areas. This paper describes the study design, methods, and population of the Urban Environment and Childhood Asthma (URECA) study, which was established to investigate the immunologic causes of asthma among inner-city children.</p> <p>Methods and Results</p> <p>URECA is an observational prospective study that enrolled pregnant women in central urban areas of Baltimore, Boston, New York City, and St. Louis and is following their offspring from birth through age 7 years. The birth cohort consists of 560 inner-city children who have at least one parent with an allergic disease or asthma, and all families live in areas in which at least 20% of the population has incomes below the poverty line. In addition, 49 inner-city children with no parental history of allergies or asthma were enrolled. The primary hypothesis is that specific urban exposures in early life promote a unique pattern of immune development (impaired antiviral and increased Th2 responses) that increases the risk of recurrent wheezing and allergic sensitization in early childhood, and of asthma by age 7 years. To track immune development, cytokine responses of blood mononuclear cells stimulated <it>ex vivo </it>are measured at birth and then annually. Environmental assessments include allergen and endotoxin levels in house dust, pre- and postnatal maternal stress, and indoor air nicotine and nitrogen dioxide. Nasal mucous samples are collected from the children during respiratory illnesses and analyzed for respiratory viruses. The complex interactions between environmental exposures and immune development will be assessed with respect to recurrent wheeze at age 3 years and asthma at age 7 years.</p> <p>Conclusion</p> <p>The overall goal of the URECA study is to develop a better understanding of how specific urban exposures affect immune development to promote wheezing illnesses and asthma.</p

    Novel insights into the aetiology and pathophysiology of increased airway inflammation during COPD exacerbations

    Get PDF
    Airway inflammation increases during acute exacerbations of COPD. Extrinsic factors, such as airway infections, increased air pollution, and intrinsic factors, such as increased oxidative stress and altered immunity may contribute to this increase. The evidence for this and the potential mechanisms by which various aetiological agents increase inflammation during COPD exacerbations is reviewed. The pathophysiologic consequences of increased airway inflammation during COPD exacerbations are also discussed. This review aims to establish a cause and effect relationship between etiological factors of increased airway inflammation and COPD exacerbations based on recently published data. Although it can be speculated that reducing inflammation may prevent and/or treat COPD exacerbations, the existing anti-inflammatory treatments are modestly effective

    The Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort study: Assessment of environmental exposures

    Get PDF
    The Canadian Healthy Infant Longitudinal Development birth cohort was designed to elucidate interactions between environment and genetics underlying development of asthma and allergy. Over 3600 pregnant mothers were recruited from the general population in four provinces with diverse environments. The child is followed to age 5 years, with prospective characterization of diverse exposures during this critical period. Key exposure domains include indoor and outdoor air pollutants, inhalation, ingestion and dermal uptake of chemicals, mold, dampness, biological allergens, pets and pests, housing structure, and living behavior, together with infections, nutrition, psychosocial environment, and medications. Assessments of early life exposures are focused on those linked to inflammatory responses driven by the acquired and innate immune systems. Mothers complete extensive environmental questionnaires including time-activity behavior at recruitment and when the child is 3, 6, 12, 24, 30, 36, 48, and 60 months old. House dust collected during a thorough home assessment at 3–4 months, and biological specimens obtained for multiple exposure-related measurements, are archived for analyses. Geo-locations of homes and daycares and land-use regression for estimating traffic-related air pollution complement time-activity-behavior data to provide comprehensive individual exposure profiles. Several analytical frameworks are proposed to address the many interacting exposure variables and potential issues of co-linearity in this complex data set

    Evidence for differential photic regulation of pineal melatonin synthesis in teleosts

    Get PDF
    The aim of this study was to compare the circadian control of melatonin production in teleosts. To do so, the effects of ophthalmectomy on circulating melatonin rhythms were studied along with ex vivo pineal culture in six different teleosts. Results strongly suggested that the circadian control of melatonin production could have dramatically changed with at least three different systems being present in teleosts when one considers the photic regulation of pineal melatonin production. First, salmonids presented a decentralized system in which the pineal gland responds directly to light independently of the eyes. Then, in seabass and cod both the eyes and the pineal gland are required to sustain full night-time melatonin production. Finally, a third type of circadian control of melatonin production is proposed in tilapia and catfish in which the pineal gland would not be light sensitive (or only slightly) and required the eyes to perceive light and inhibit melatonin synthesis. Further studies (anatomical, ultrastructural, retinal projections) are needed to confirm these results. Ex vivo experiments indirectly confirmed these results, as while the pineal gland responded normally to day–night rhythms in salmonids, seabass and cod, only very low levels were obtained at night in tilapia and no melatonin could be measured from isolated pineal glands in catfish. Together, these findings suggest that mechanisms involved in the perception of light and the transduction of this signal through the circadian axis has changed in teleosts possibly as a reflection of the photic environment in which they have evolved in
    corecore