2,084 research outputs found

    Dielectric Hysteresis, Relaxation Dynamics, and Non-volatile Memory Effect in Carbon Nanotube Dispersed Liquid Crystal

    Full text link
    The self-organizing properties of nematic liquid crystals (LC) can be used to template carbon nanotubes (CNTs) on a macroscopic dimension. The nematic director field, coupled to the dispersed CNT long-axis, enables controlled director reorientation using well-established methods of LC alignment techniques, such as patterned-electrode-surface, electric fields, and magnetic fields. Electric field induced director rotation of a nematic LC+CNT system is of potential interests due to its possible applications as a nano electromechanical system. The relaxation mechanism for a LC+CNT composite, on the removal of the applied field, reveals the intrinsic dynamics of this anisotropic system. Dielectric hysteresis and temperature dependence of the dielectric constant coherently shows the ferroelectric-type behavior of the LC+CNT system in the nematic phase. The strong surface anchoring of LC molecules on CNT walls results in forming local isolated pseudo-nematic domains in the isotropic phase. These domains, being anisotropic, respond to external fields, but, do not relax back to the original state on switching of the field off, showing non-volatile memory effect.Comment: 7 pages, 8 figure

    Calorimetric study of the nematic to smectic-A phase transition in octylcyanobiphenyl-hexane binary mixtures

    Full text link
    The continuous nematic to smectic-A (N-SmA) phase transition has been studied by high-resolution ac-calorimetry in binary mixtures of the liquid crystal octylcyanobiphenyl(8CB) and a non-mesogenic, low-molecular weight, solvent n-hexane(hex) as a function of temperature and solvent concentration. Heating and cooling scans about the N-SmA transition temperature were repeatedly performed on pure and six 8CB+hex samples having hexane molar concentration ranging from x_{hex}= 0.02 to 0.12. All 8CB+hex samples in this range of x_{hex} remain macroscopically miscible and exhibit an N-SmA heat capacity peak that shifts non-monotonically to lower temperature and evolves in shape, with a reproducible hysteresis, as x_{hex} increases. The imaginary part of heat capacity remains zero up to x^{TCP}_{hex}\simeq 0.07$ above which the distinct peak is observed, corresponding to a jump in both the real and imaginary enthalpy. A simple power-law analysis reveals an effective exponent that increases smoothly from 0.30 to 0.50 with an amplitude ratio A^{-}/A^{+}\rightarrow 1 as x_{hex}\rightarrow x^{TCP}_{hex}. This observed crossover towards the N-SmA tricritical point driven by solvent concentration is consistent with previous results and can be understood as weakening of the liquid crystal intermolecular potential promoting increased nematic fluctuations

    Lacunary generating functions of Hermite polynomials and symbolic methods

    Get PDF
    We employ an umbral formalism to reformulate the theory of Hermite polynomials and the derivation of the associated lacunary generating functions

    Pulmonary Embolism Associated to HIV Infection

    Get PDF
    A presença de anticorpos antifosfolípidos é frequente em doentes com infecção VIH principalmente em fases avançadas da doença. Apesar da elevada prevalência de anticorpos antifosfolípidos, a sua associação a fenómenos trombóticos é rara, estando apenas descritos alguns casos. Os autores apresentam um caso clínico cuja manifestação inaugural de uma infecção VIH foi um tromboembolismo pulmonar associado á presença de anticoagulante lúpico

    Simultaneous calculation of the helical pitch and the twist elastic constant in chiral liquid crystals from intermolecular torques

    Get PDF
    We present a molecular simulation method that yields simultaneously the equilibrium pitch wave number q and the twist elastic constant K2 of a chiral nematic liquid crystal by sampling the torque density. A simulation of an untwisted system in periodic boundary conditions gives the product K2q; a further simulation with a uniform twist applied provides enough information to separately determine the two factors. We test our new method for a model potential, comparing the results with K2q from a thermodynamic integration route, and with K2 from an order fluctuation analysis. We also present a thermodynamic perturbation theory analysis valid in the limit of weak chirality

    Expressions for forces and torques in molecular simulations using rigid bodies

    Get PDF
    Expressions for intermolecular forces and torques, derived from pair potentials between rigid non-spherical units, are presented. The aim is to give compact and clear expressions, which are easily generalised, and which minimise the risk of error in writing molecular dynamics simulation programs. It is anticipated that these expressions will be useful in the simulation of liquid crystalline systems, and in coarse-grained modelling of macromolecules

    Global magnetic cycles in rapidly rotating younger suns

    Full text link
    Observations of sun-like stars rotating faster than our current sun tend to exhibit increased magnetic activity as well as magnetic cycles spanning multiple years. Using global simulations in spherical shells to study the coupling of large-scale convection, rotation, and magnetism in a younger sun, we have probed effects of rotation on stellar dynamos and the nature of magnetic cycles. Major 3-D MHD simulations carried out at three times the current solar rotation rate reveal hydromagnetic dynamo action that yields wreaths of strong toroidal magnetic field at low latitudes, often with opposite polarity in the two hemispheres. Our recent simulations have explored behavior in systems with considerably lower diffusivities, achieved with sub-grid scale models including a dynamic Smagorinsky treatment of unresolved turbulence. The lower diffusion promotes the generation of magnetic wreaths that undergo prominent temporal variations in field strength, exhibiting global magnetic cycles that involve polarity reversals. In our least diffusive simulation, we find that magnetic buoyancy coupled with advection by convective giant cells can lead to the rise of coherent loops of magnetic field toward the top of the simulated domain.Comment: 4 pages, 3 figures, from IAU 273: The Physics of Sun and Star Spot
    corecore