5 research outputs found

    The Cosmological Slingshot Scenario: A Stringy Early Times Universe

    Full text link
    A cosmological model for the early time Universe is proposed. In this model, the Universe is a wandering brane moving in a warped throat of a Calabi-Yau space. A non-zero angular momentum induces a turning point in the brane trajectory, and leads to a bouncing cosmology as experienced by an observer living on the brane. The Universe undergoes a decelerated contraction followed by an accelerating expansion and no big-bang singularity. Although the number of e-folds of accelerated motion is low (less than 2), standard cosmological problems are not present in our model thanks to the absence of an initial singularity and the violation of energy conditions of mirage matter at high energies. Density perturbations are also calculated in our model and we find a slightly red spectral index with negligible tensorial perturbations in compatibility with WMAP data.Comment: v5: clarifications and references added, results unchanged, version accepted in Class. Quant. Grav. (2008), 34 pages, 5 figure

    Generating the curvature perturbation with instant preheating

    Get PDF
    A new mechanism for generating the curvature perturbation at the end of inflaton has been investigated. The dominant contribution to the primordial curvature perturbation may be generated during the period of instant preheating. The mechanism converts isocurvature perturbation related to a light field into curvature perturbation, where the ``light field'' is not the inflaton field. This mechanism is important in inflationary models where kinetic energy is significant at the end of inflaton. We show how one can apply this mechanism to various brane inflationary models.Comment: 17 pages, 1 figure, To appear in JCA

    The Cosmological Slingshot Scenario: Myths and Facts

    Get PDF
    We generalize the Cosmological Slingshot Scenario for a Slingshot brane moving in a Klebanov-Strassler throat. We show that the horizon and isotropy problems of standard cosmology are avoided, while the flatness problem is acceptably alleviated. Regarding the primordial perturbations, we identify their vacuum state and elucidate the evolution from the quantum to the classical regimes. Also, we calculate their exact power spectrum showing its compatibility with current data. We discuss the bouncing solution from a four dimensional point of view. In this framework the radial and angular motion of the Slingshot brane are described by two scalar fields. We show that the bouncing solution for the scale factor in String frame is mapped into a monotonically increasing (in conformal time) solution in the Einstein frame. We finally discuss about the regularity of the geometry in Einstein frame.Comment: 16 pages, 2 figs. Major clarifications and references added, version accepted in Gen. Rel. Grav. (2009

    Perturbative instabilities in Horava gravity

    Full text link
    We investigate the scalar and tensor perturbations in Horava gravity, with and without detailed balance, around a flat background. Once both types of perturbations are taken into account, it is revealed that the theory is plagued by ghost-like scalar instabilities in the range of parameters which would render it power-counting renormalizable, that cannot be overcome by simple tricks such as analytic continuation. Implementing a consistent flow between the UV and IR limits seems thus more challenging than initially presumed, regardless of whether the theory approaches General Relativity at low energies or not. Even in the phenomenologically viable parameter space, the tensor sector leads to additional potential problems, such as fine-tunings and super-luminal propagation.Comment: 21 pages, version published at Class. Quant. Gra
    corecore