12 research outputs found

    ApoB-100 Lipoprotein Complex Formation with Intima Proteoglycans as a Cause of Atherosclerosis and Its Possible Ex Vivo Evaluation as a Disease Biomarker

    No full text
    Experimental and clinical data indicate that the initiation and progress of atherosclerosis and its clinical manifestations are first caused by circulating apoB-100 lipoproteins that enter and are retained in the arterial intima. Extracellular sulfated proteoglycans (PGs) of the intima are the retention agents. The PGs also initiate physical and biochemical lipoprotein degradation with the production of bioactive, lipid products that trigger an inflammatory response that leads to atherosclerosis. There are many simple methods for measuring abnormalities of circulating lipoproteins and their relation to atherosclerotic cardiovascular disease (ACVD). However, limited research aims to evaluate procedures that could report quantitatively about the contribution of the interaction of apoB-100 lipoprotein-arterial intima PGs to clinical manifestation of ACVD. In the present review we discuss observations indicating that simple ex vivo evaluation of the affinity of apoB-100 lipoproteins for arterial PGs and glycosaminoglycans (GAGs) can give an indication of its association with clinical manifestations of atherosclerosis. In addition, we discuss molecular and cellular aspects of the apoB-100 lipoproteins association with arterial PGs that are related to atherogenesis and that support the experimental framework behind the current “Response-to-Retention” hypothesis of atherosclerosis

    Postprandial Hypertriglyceridemia Is Associated with the Variant 54 Threonine FABP2 Gene

    No full text
    Purpose: Fasting or postprandial hypertriglyceridemia is considered an independent cardiovascular disease (CVD) risk factor. The intestinal fatty acid binding protein (FABP2) is involved in the intracellular transport and metabolism of fatty acids. The presence of the Ala54Thr polymorphism of the FABP2 gene appears to be involved in postprandial hypertriglyceridemia. We explored the possible association of the Ala54Thr polymorphism with fat intolerance in apparently healthy, fasting, normolipidemic subjects with normal body-mass index and without diabetes. Methodology: A total of 158 apparently healthy individuals were classified as fat tolerant (n = 123) or intolerant (n = 35) according to their response (plasma triglycerides) to an oral abbreviated tolerance test with blood samples taken at 0, 2 and 4 h. At 0 h, all subjects ingested 26.3 g of fats. Presence of the Ala54Thr polymorphism of the FABP2 gene was evaluated by polymerase chain reaction–restriction fragment length (PCR–RFLP). Results: The group with fat intolerance (postprandial hypertriglyceridemia group) showed an increased frequency of the Thr54Thr genotype when compared with the group with normal fat tolerance (control group) (23% vs. 4%, respectively, OR: 16.53, 95% CI: 4.09–66.82, p: 0.0001, pc: 0.0003). Carriers of at least one Thr54 allele were up to six times more prevalent in the fat intolerant group than in the non-carriers. (OR: 6.35; 95% CI: 1.86–21.59, p: 0.0003, pc: 0.0009). The levels of plasma triglycerides (Tg) at 4 h after the test meal were higher in carriers of at least one 54Thr allele than in carriers of the Ala54 allele (p < 0.05). Conclusions: There is a significant association between postprandial hypertriglyceridemia and the presence of at least one 54Thr allele of the FABP2 gene. In addition, subjects with this genotype showed an increased ratio of Tg/HDL-cholesterol. This parameter is a marker of increased CVD risk and insulin resistance
    corecore