278 research outputs found

    Deterministic and Stochastic Spin Diffusion in Classical Heisenberg Magnets

    Get PDF
    This computer simulation study provides further evidence that spin diffusion in the one‐dimensional classical Heisenberg model at T=∞ is anomalous: 〈S j ( t )⋅S j 〉 ∌t −α 1 withα1 ≳1/2. However, the exponential instability of the numerically integrated phase‐space trajectories transforms the deterministic transport of spin fluctuations into a computationally generated stochastic process in which the global conservation laws are still satisfied to high precision. This may cause a crossover in 〈S j ( t )⋅S j 〉 from anomalous spin diffusion (α1 ≳ 1/2) to normal spin diffusion (α1 = 1/2) at some characteristic time lag that depends on the precision of the numerical integration

    Spin Diffusion in Classical Heisenberg Magnets with Uniform, Alternating, and Random Exchange

    Get PDF
    We have carried out an extensive simulation study for the spin autocorrelation function at T=∞ of the one‐dimensional classical Heisenberg model with four different types of isotropic bilinear nearest‐neighbor coupling: uniform exchange, alternating exchange, and two kinds of random exchange. For the long‐time tails of all but one case, the simulation data seem incompatible with the simple ∌t −1/2 leading term predicted by spin diffusion phenomenology

    Reconstruction of a first-order phase transition from computer simulations of individual phases and subphases

    Full text link
    We present a new method for investigating first-order phase transitions using Monte Carlo simulations. It relies on the multiple-histogram method and uses solely histograms of individual phases. In addition, we extend the method to include histograms of subphases. The free energy difference between phases, necessary for attributing the correct statistical weights to the histograms, is determined by a detour in control parameter space via auxiliary systems with short relaxation times. We apply this method to a recently introduced model for structure formation in polypeptides for which other methods fail.Comment: 13 pages in preprint mode, REVTeX, 2 Figures available from the authors ([email protected], [email protected]

    Spin dynamics simulations of the magnetic dynamics of RbMnF3_3 and direct comparison with experiment

    Full text link
    Spin-dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of the classical Heisenberg antiferromagnet in simple cubic lattices with linear sizes L≀60L\leq 60. This system is widely recognized as an appropriate model for the magnetic properties of RbMnF3_3. Time-evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a new algorithm implemented by Krech {\it etal}, which is based on fourth-order Suzuki-Trotter decompositions of exponential operators. The dynamic structure factor was calculated from the space- and time-displaced spin-spin correlation function. The crossover from hydrodynamic to critical behavior of the dispersion curve and spin-wave half-width was studied as the temperature was increased towards the critical temperature. The dynamic critical exponent was estimated to be z=(1.43±0.03)z=(1.43\pm 0.03), which is slightly lower than the dynamic scaling prediction, but in good agreement with a recent experimental value. Direct, quantitative comparisons of both the dispersion curve and the lineshapes obtained from our simulations with very recent experimental results for RbMnF3_3 are presented.Comment: 30 pages, RevTex, 9 figures, to appear in PR

    Critical dynamics in the 2d classical XY-model: a spin dynamics study

    Full text link
    Using spin-dynamics techniques we have performed large-scale computer simulations of the dynamic behavior of the classical three component XY-model (i.e. the anisotropic limit of an easy-plane Heisenberg ferromagnet), on square lattices of size up to 192^2, for several temperatures below, at, and above T_KT. The temporal evolution of spin configurations was determined numerically from coupled equations of motion for individual spins by a fourth order predictor-corrector method, with initial spin configurations generated by a hybrid Monte Carlo algorithm. The neutron scattering function S(q,omega) was calculated from the resultant space-time displaced spin-spin correlation function. Pronounced spin-wave peaks were found both in the in-plane and the out-of-plane scattering function over a wide range of temperatures. The in-plane scattering function S^xx also has a large number of clear but weak additional peaks, which we interpret to come from two-spin-wave scattering. In addition, we observed a small central peak in S^xx, even at temperatures well below the phase transition. We used dynamic finite size scaling theory to extract the dynamic critical exponent z. We find z=1.00(4) for all T <= T_KT, in excellent agreement with theoretical predictions, although the shape of S(q,omega) is not well described by current theory.Comment: 31 pages, LaTex, 13 figures (38 subfigures) included as eps-files, needs psfig, 260 K

    Diet and subsistence in Bronze Age pastoral communities from the southern Russian steppes and the North Caucasus

    Get PDF
    The flanks of the Caucasus Mountains and the steppe landscape to their north offered highly productive grasslands for Bronze Age herders and their flocks of sheep, goat, and cattle. While the archaeological evidence points to a largely pastoral lifestyle, knowledge regarding the general composition of human diets and their variation across landscapes and during the different phases of the Bronze Age is still restricted. Human and animal skeletal remains from the burial mounds that dominate the archaeological landscape and their stable isotope compositions are major sources of dietary information. Here, we present stable carbon and nitrogen isotope data of bone collagen of 105 human and 50 animal individuals from the 5th millennium BC to the Sarmatian period, with a strong focus on the Bronze Age and its cultural units including Maykop, Yamnaya, Novotitorovskaya, North Caucasian, Catacomb, post-Catacomb and late Bronze Age groups. The samples comprise all inhumations with sufficient bone preservation from five burial mound sites and a flat grave cemetery as well as subsamples from three further sites. They represent the Caucasus Mountains in the south, the piedmont zone and Kuban steppe with humid steppe and forest vegetation to its north, and more arid regions in the Caspian steppe. The stable isotope compositions of the bone collagen of humans and animals varied across the study area and reflect regional diversity in environmental conditions and diets. The data agree with meat, milk, and/or dairy products from domesticated herbivores, especially from sheep and goats having contributed substantially to human diets, as it is common for a largely pastoral economy. This observation is also in correspondence with the faunal remains observed in the graves and offerings of animals in the mound shells. In addition, foodstuffs with elevated carbon and nitrogen isotope values, such as meat of unweaned animals, fish, or plants, also contributed to human diets, especially among communities living in the more arid landscapes. The regional distinction of the animal and human data with few outliers points to mobility radii that were largely concentrated within the environmental zones in which the respective sites are located. In general, dietary variation among the cultural entities as well as regarding age, sex and archaeologically indicated social status is only weakly reflected. There is, however, some indication for a dietary shift during the Early Bronze Age Maykop period

    Inductively coupled plasma mass spectrometric detection for multielement flow injection analysis and elemental speciation by reversed-phase liquid chromatography

    Get PDF
    The feasibility of using an inductively coupled plasma mass spectrometer as a muitieiement detector for flow injection analysis (FIA) and ion-pair reversed-phase liquid chromatography was investigated. Sample introduction was by uitrasonk nebulization with aerosol desolvation. Absolute detecton limits for FIA ranged from 0.01 to 0.1 ng for most elements using 10-pL injections. Over 30 elements were surveyed for their response to both anionic and cationic ion pairing reagents. The separation and selective detection of various As and Se species were demonstrated, yielding detection limits near 0.1 ng (as element) for ail six species present. Determination of 15 elements in a single injection with multiple ion monitoring produced shniiar detection limits. Isotope ratios were measured with sufficient precision (better than 2%) and accuracy (about 1 %) on eluting peaks of Cd and Pb to demonstrate that liquid chromatographyhductively coupled plasma mass spectrometry should make speciation studies with stable tracer isotopes feasible
    • 

    corecore