6 research outputs found

    Hydrogeophysical and hydrochemical assessment of the northeastern coastal aquifer of Egypt for desalination suitability

    Get PDF
    Recently the limited freshwater resources have become one of the most significant challenges facing Egypt. Thus, new resources of drinkable water are required to meet the growing population demands and the national projects, to support the country’s economy. Saline groundwater desalination is an option that can support limited freshwater resources. This research represents a detailed analysis of hydrogeological and hydrochemical characteristics of a coastal aquifer in the West Port Said area, northeastern Egypt, to assess the desalination suitability of the aquifer, especially when the nearby seawater is contaminated. The hydrogeological characterization included various integrated approaches: geophysical survey, field investigations, wells drilling, well logging, pumping tests, and water sampling. The results show that: (1) The subsurface lithology consists of sandstone and clay, and three water bearing layers: A, B and C. (2) The average porosity values are 22%, 27.5%, and 25% for layers A, B, and C, respectively. The hydraulic conductivity values fall in the ranges of 5.8–12.7 m/day for layer A, 7.6–11.7 m/day for layer B, and 11.1–19.5 m/day for layer C, while the highest transmissivity values are in ranges of 5.8 × 102–12.7 × 102 m2/day for layer A, 7.6 × 102–11.7 × 102 m2/day for layer B and 11.1 × 102–19.5 × 102 m2/day for layer C. (3) The average storage values are 2.1 × 10−3, 1.8 × 10−3 and 5.3 × 10−3 in layers A, B and C, respectively. (4) Layers A and B showed Na-Cl-type, similar to seawater, but free from oil pollution. These results show layer B’s higher productivity and better quality. Despite the salinity, desalination technology can improve.Geolog

    Factors Eliciting Corporate Fraud in Emerging Markets: Case of Firms Subject to Enforcement Actions in Malaysia

    No full text
    corecore