30 research outputs found

    Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide

    Get PDF
    Perovskite oxide surfaces catalyze oxygen exchange reactions that are crucial for fuel cells, electrolyzers, and thermochemical fuel synthesis. Here, by bridging the gap between surface analysis with atomic resolution and oxygen exchange kinetics measurements, we demonstrate how the exact surface atomic structure can determine the reactivity for oxygen exchange reactions on a model perovskite oxide. Two precisely controlled surface reconstructions with (4 × 1) and (2 × 5) symmetry on 0.5 wt.% Nb-doped SrTiO3(110) were subjected to isotopically labeled oxygen exchange at 450 °C. The oxygen incorporation rate is three times higher on the (4 × 1) surface phase compared to the (2 × 5). Common models of surface reactivity based on the availability of oxygen vacancies or on the ease of electron transfer cannot account for this difference. We propose a structure-driven oxygen exchange mechanism, relying on the flexibility of the surface coordination polyhedra that transform upon dissociation of oxygen molecules.Austrian Science Fund (SFB “ Functional Oxide Surfaces and Interfaces ” - FOXSI, Project F 45)European Research Council Advanced Grant (“OxideSurfaces” (Project ERC-2011-ADG_20110209))National Science Foundation (U.S.). Division of Materials Research (CAREER Award Grant No. 1055583

    Grass strategies and grassland community responses to environmental drivers: a review

    Full text link

    Of yeast, mice and men: MAMs come in two flavors

    Full text link

    Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation

    No full text
    Ribonucleotides are frequently incorporated into DNA during eukaryotic replication. Here we map the genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5′-DNA end-mapping method, Hydrolytic End Sequencing. HydEn-Seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the role of DNA polymerases α and δ in lagging strand replication and of DNA polymerase ε in leading strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-Seq also reveals strand-specific 5′-DNA ends at mitochondrial replication origins, suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-Seq can be used to track replication enzymology in other organisms
    corecore