3 research outputs found

    Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series

    No full text
    Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of proteinā€“ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of soluteā€“solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple proteinā€“ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structureā€“activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors

    Targeting Dynamic Pockets of HIVā€‘1 Protease by Structure-Based Computational Screening for Allosteric Inhibitors

    No full text
    We present the discovery of low molecular weight inhibitors of human immunodeficiency virus 1 (HIV-1) protease subtype B that were identified by structure-based virtual screening as ligands of an allosteric surface cavity. For pocket identification and prioritization, we performed a molecular dynamics simulation and observed several flexible, partially transient surface cavities. For one of these presumable ligand-binding pockets that are located in the so-called ā€œhinge regionā€ of the identical protease chains, we computed a receptor-derived pharmacophore model, with which we retrieved fragment-like inhibitors from a screening compound pool. The most potent hit inhibited protease activity in vitro in a noncompetitive mode of action. Although attempts failed to crystallize this ligand bound to the enzyme, the study provides proof-of-concept for identifying innovative tool compounds for chemical biology by addressing flexible protein models with receptor pocket-derived pharmacophore screening

    Identification of High-Affinity P2Y<sub>12</sub> Antagonists Based on a Phenylpyrazole Glutamic Acid Piperazine Backbone

    No full text
    A series of novel, highly potent P2Y<sub>12</sub> antagonists as inhibitors of platelet aggregation based on a phenylpyrazole glutamic acid piperazine backbone is described. Exploration of the structural requirements of the substituents by probing the structureā€“activity relationship along this backbone led to the discovery of the <i>N</i>-acetyl-(<i>S</i>)-proline cyclobutyl amide moiety as a highly privileged motif. Combining the most favorable substituents led to remarkably potent P2Y<sub>12</sub> antagonists displaying not only low nanomolar binding affinity to the P2Y<sub>12</sub> receptor but also a low nanomolar inhibition of platelet aggregation in the human platelet rich plasma assay with IC<sub>50</sub> values below 50 nM. Using a homology and a three-dimensional quantitative structureā€“activity relationship model, a binding hypothesis elucidating the impact of several structural features was developed
    corecore