3 research outputs found

    Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space

    Get PDF
    Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The assay data generated were analyzed using a variety of quality control metrics, and the resultant assay profiles were explored using statistical methods, such as clustering and compound promiscuity analyses. Individual compounds were then sorted by structural class and activity profiles. Differential behavior based on these classifications, as well as noteworthy activities, are outlined herein. One such highlight is the activity of (−)-2(S)-cathafoline, which was found to stabilize calcium levels in the endoplasmic reticulum. The workflow described here illustrates a pilot effort to broadly survey the biological potential of natural products by utilizing the power of automation and high-throughput screening

    Drug Effect Prediction by Polypharmacology-Based Interaction Profiling

    No full text
    Most drugs exert their effects via multitarget interactions, as hypothesized by polypharmacology. While these multitarget interactions are responsible for the clinical effect profiles of drugs, current methods have failed to uncover the complex relationships between them. Here, we introduce an approach which is able to relate complex drug–protein interaction profiles with effect profiles. Structural data and registered effect profiles of all small-molecule drugs were collected, and interactions to a series of nontarget protein binding sites of each drug were calculated. Statistical analyses confirmed a close relationship between the studied 177 major effect categories and interaction profiles of ca. 1200 FDA-approved small-molecule drugs. On the basis of this relationship, the effect profiles of drugs were revealed in their entirety, and hitherto uncovered effects could be predicted in a systematic manner. Our results show that the prediction power is independent of the composition of the protein set used for interaction profile generation

    Canvass: A Crowd-Sourced, Natural Product Screening Library for Exploring Biological Space

    No full text
    Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The assay data generated were analyzed using a variety of quality control metrics, and the resultant assay profiles were explored using statistical methods, such as clustering and compound promiscuity analyses. Individual compounds were then sorted by structural class and activity profiles. Differential behavior based on these classifications, as well as noteworthy activities, are outlined herein. One such highlight is the activity of (–)-2(S)-cathafoline, which was found to stabilize calcium levels in the endoplasmic reticulum. The workflow described here illustrates a pilot effort to broadly survey the biological potential of natural products by utilizing the power of automation and high-throughput screening
    corecore