18 research outputs found

    P2Y receptors in synaptic transmission and plasticity: Therapeutic potential in cognitive dysfunction

    Get PDF
    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states

    Regulation of Hippocampal Gamma Oscillations by Modulation of Intrinsic Neuronal Excitability

    Get PDF
    Ion channels activated around the subthreshold membrane potential determine the likelihood of neuronal firing in response to synaptic inputs, a process described as intrinsic neuronal excitability. Long-term plasticity of chemical synaptic transmission is traditionally considered the main cellular mechanism of information storage in the brain; however, voltage- and calcium-activated channels modulating the inputs or outputs of neurons are also subjects of plastic changes and play a major role in learning and memory formation. Gamma oscillations are associated with numerous higher cognitive functions such as learning and memory, but our knowledge of their dependence on intrinsic plasticity is by far limited. Here we investigated the roles of potassium and calcium channels activated at near subthreshold membrane potentials in cholinergically induced persistent gamma oscillations measured in the CA3 area of rat hippocampal slices. Among potassium channels, which are responsible for the afterhyperpolarization in CA3 pyramidal cells, we found that blockers of SK (KCa2) and KV7.2/7.3 (KCNQ2/3), but not the BK (KCa1.1) and IK (KCa3.1) channels, increased the power of gamma oscillations. On the contrary, activators of these channels had an attenuating effect without affecting the frequency. Pharmacological blockade of the low voltage-activated T-type calcium channels (CaV3.1–3.3) reduced gamma power and increased the oscillation peak frequency. Enhancement of these channels also inhibited the peak power without altering the frequency of the oscillations. The presented data suggest that voltage- and calcium-activated ion channels involved in intrinsic excitability strongly regulate the power of hippocampal gamma oscillations. Targeting these channels could represent a valuable pharmacological strategy against cognitive impairment

    The actin binding protein drebrin helps to protect against the development of seizure-like events in the entorhinal cortex

    Get PDF
    The actin binding protein drebrin plays a key role in dendritic spine formation and synaptic plasticity. Decreased drebrin protein levels have been observed in temporal lobe epilepsy, suggesting the involvement of drebrin in the disease. Here we investigated the effect of drebrin knockout on physiological and pathophysiological neuronal network activities in mice by inducing gamma oscillations, involved in higher cognitive functions, and by analyzing pathophysiological epileptiform activity. We found that loss of drebrin increased the emergence of spontaneous gamma oscillations suggesting an increase in neuronal excitability when drebrin is absent. Further analysis showed that although the kainate-induced hippocampal gamma oscillations were unchanged in drebrin deficient mice, seizure like events measured in the entorhinal cortex appeared earlier and more frequently. The results suggest that while drebrin is not essential for normal physiological network activity, it helps to protect against the formation of seizure like activities during pathological conditions. The data indicate that targeting drebrin function could potentially be a preventive or therapeutic strategy for epilepsy treatment

    The novel antipsychotic cariprazine stabilizes gamma oscillations in rat hippocampal slices

    Get PDF
    Background and purpose: Gamma oscillations are fast rhythmic fluctuations of neuronal network activity ranging from 30 to 90 Hz that establish a precise temporal background for cognitive processes such as perception, sensory processing, learning, and memory. Alterations of gamma oscillations have been observed in schizophrenia and are suggested to play crucial roles in the generation of positive, negative, and cognitive symptoms of the disease. Experimental approach: In this study, we investigated the effects of the novel antipsychotic cariprazine, a D3 -preferring dopamine D3 /D2 receptor partial agonist, on cholinergically induced gamma oscillations in rat hippocampal slices from treatment-naïve and MK-801-treated rats, a model of acute first-episode schizophrenia. Key results: The D3 receptor-preferring agonist pramipexole effectively decreased the power of gamma oscillations, while the D3 receptor antagonist SB-277011 had no effect. In treatment-naïve animals, cariprazine did not modulate strong gamma oscillations but slightly improved the periodicity of non-saturated gamma activity. Cariprazine showed a clear partial agonistic profile at D3 receptors at the network level by potentiating the inhibitory effects when the D3 receptor tone was low and antagonizing the effects when the tone was high. In hippocampal slices of MK-801-treated rats, cariprazine allowed stabilization of the aberrant increase in gamma oscillation power and potentiated resynchronization of the oscillations. Conclusion and implications: Data from this study indicate that cariprazine stabilizes pathological hippocampal gamma oscillations, presumably by its partial agonistic profile. The results demonstrate in vitro gamma oscillations as predictive biomarkers to study the effects of antipsychotics preclinically at the network level

    Bioenergetic mechanisms of seizure control

    Get PDF
    Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control

    P2Y receptors and pain transmission

    Get PDF
    It is widely accepted that the most important ATP receptors involved in pain transmission belong to the P2X3 and P2X2/3 subtypes, selectively expressed in small diameter dorsal root ganglion (DRG) neurons. However, several types of the metabotropic ATP (P2Y) receptors have also been found in primary afferent neurons; P2Y1 and P2Y2 receptors are typically expressed in small, nociceptive cells. Here we review the results available on the involvement of P2Y receptors in the modulation of pain transmission

    NMDA-receptor inhibition and oxidative stress during hippocampal maturation differentially alter parvalbumin expression and gamma-band activity

    Get PDF
    Abstract Dysfunction of parvalbumin (PV)-expressing interneurons is thought to underlie the alterations of gamma-band oscillations observed in schizophrenia. Although the pathomechanisms of this disease remain unclear, oxidative stress induced by NMDA receptor (NMDAR) hypofunction and decreased glutathione (GSH) synthesizing capacity have been shown to lead to PV-loss and aberrant oscillatory activity. However, the individual contributions of NMDAR-inhibition and GSH-depletion to the developmental alterations observed in schizophrenia are largely unknown. We therefore investigated each condition in isolation using hippocampal slice cultures wherein interneuron maturation occurs entirely in vitro. Although both treatments caused oxidative stress, NMDAR-inhibition led to an immediate reduction in gamma oscillation frequency and a delayed loss of PV. In contrast, GSH-depletion immediately decreased PV expression and increased power, without affecting frequency. Hence, although disturbances of PV-expression and gamma oscillations coexist in schizophrenia, they can arise from separate pathological processes

    P2Y1 receptors inhibit long-term depression in the prefrontal cortex.

    No full text
    Long-term depression (LTD) is a form of synaptic plasticity that may contribute to information storage in the central nervous system. Here we report that LTD can be elicited in layer 5 pyramidal neurons of the rat prefrontal cortex by pairing low frequency stimulation with a modest postsynaptic depolarization. The induction of LTD required the activation of both metabotropic glutamate receptors of the mGlu1 subtype and voltage-sensitive Ca(2+) channels (VSCCs) of the T/R, P/Q and N types, leading to the stimulation of intracellular inositol trisphosphate (IP3) receptors by IP3 and Ca(2+). The subsequent release of Ca(2+) from intracellular stores activated the protein phosphatase cascade involving calcineurin and protein phosphatase 1. The activation of purinergic P2Y(1) receptors blocked LTD. This effect was prevented by P2Y(1) receptor antagonists and was absent in mice lacking P2Y(1) but not P2Y(2) receptors. We also found that activation of P2Y(1) receptors inhibits Ca(2+) transients via VSCCs in the apical dendrites and spines of pyramidal neurons. In addition, we show that the release of ATP under hypoxia is able to inhibit LTD by acting on postsynaptic P2Y(1) receptors. In conclusion, these data suggest that the reduction of Ca(2+) influx via VSCCs caused by the activation of P2Y(1) receptors by ATP is the possible mechanism for the inhibition of LTD in prefrontal cortex
    corecore