538 research outputs found

    Complexity Adjusted Soft-Output Sphere Decoding by Adaptive LLR Clipping

    Full text link
    A-posteriori probability (APP) receivers operating over multiple-input, multiple-output channels provide enhanced bit error rate (BER) performance at the cost of increased complexity. However, employing full APP processing over favorable transmission environments, where less efficient approaches may already provide the required performance at a reduced complexity, results in unnecessary processing. For slowly varying channel statistics substantial complexity savings can be achieved by simple adaptive schemes. Such schemes track the BER performance and adjust the complexity of the soft output sphere decoder by adaptively setting the related log-likelihood ratio (LLR) clipping value.Comment: The final version of this paper appears in IEEE Communications Letter

    Approximate MIMO Iterative Processing with Adjustable Complexity Requirements

    Full text link
    Targeting always the best achievable bit error rate (BER) performance in iterative receivers operating over multiple-input multiple-output (MIMO) channels may result in significant waste of resources, especially when the achievable BER is orders of magnitude better than the target performance (e.g., under good channel conditions and at high signal-to-noise ratio (SNR)). In contrast to the typical iterative schemes, a practical iterative decoding framework that approximates the soft-information exchange is proposed which allows reduced complexity sphere and channel decoding, adjustable to the transmission conditions and the required bit error rate. With the proposed approximate soft information exchange the performance of the exact soft information can still be reached with significant complexity gains.Comment: The final version of this paper appears in IEEE Transactions on Vehicular Technolog

    A Modified Levenberg-Marquardt Method for the Bidirectional Relay Channel

    Full text link
    This paper presents an optimization approach for a system consisting of multiple bidirectional links over a two-way amplify-and-forward relay. It is desired to improve the fairness of the system. All user pairs exchange information over one relay station with multiple antennas. Due to the joint transmission to all users, the users are subject to mutual interference. A mitigation of the interference can be achieved by max-min fair precoding optimization where the relay is subject to a sum power constraint. The resulting optimization problem is non-convex. This paper proposes a novel iterative and low complexity approach based on a modified Levenberg-Marquardt method to find near optimal solutions. The presented method finds solutions close to the standard convex-solver based relaxation approach.Comment: submitted to IEEE Transactions on Vehicular Technology We corrected small mistakes in the proof of Lemma 2 and Proposition

    An Application-Specific VLIW Processor with Vector Instruction Set for CNN Acceleration

    Full text link
    In recent years, neural networks have surpassed classical algorithms in areas such as object recognition, e.g. in the well-known ImageNet challenge. As a result, great effort is being put into developing fast and efficient accelerators, especially for Convolutional Neural Networks (CNNs). In this work we present ConvAix, a fully C-programmable processor, which -- contrary to many existing architectures -- does not rely on a hard-wired array of multiply-and-accumulate (MAC) units. Instead it maps computations onto independent vector lanes making use of a carefully designed vector instruction set. The presented processor is targeted towards latency-sensitive applications and is capable of executing up to 192 MAC operations per cycle. ConvAix operates at a target clock frequency of 400 MHz in 28nm CMOS, thereby offering state-of-the-art performance with proper flexibility within its target domain. Simulation results for several 2D convolutional layers from well known CNNs (AlexNet, VGG-16) show an average ALU utilization of 72.5% using vector instructions with 16 bit fixed-point arithmetic. Compared to other well-known designs which are less flexible, ConvAix offers competitive energy efficiency of up to 497 GOP/s/W while even surpassing them in terms of area efficiency and processing speed.Comment: Accepted for publication in the proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS

    Опыт международного офиса НИУ ВШЭ в работе с иностранными учащимися

    Get PDF
    Анализируется опыт работы НИУ ВШЭ с иностранными учащимися, проблемы, возникающие при их обучении и адаптации, и способы их практического решения, выработанные НИУ ВШЭ
    corecore