127 research outputs found

    Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor

    Get PDF
    Pepper (Capsicum L.) is a nutritionally and economically important crop that is cultivated throughout the world as a vegetable, condiment, and food additive. Genetic transformation using Agrobacterium tumefaciens (agrobacterium) is a powerful biotechnology tool that could be used in pepper to develop community-based functional genomics resources and to introduce important agronomic traits. However, pepper is considered to be highly recalcitrant for agrobacterium-mediated transformation, and current transformation protocols are either inefficient, cumbersome or highly genotype dependent. The main bottleneck in pepper transformation is the inability to generate cells that are competent for both regeneration and transformation. Here, we report that ectopic expression of the Brassica napus BABY BOOM AP2/ERF transcription factor overcomes this bottleneck and can be used to efficiently regenerate transgenic plants from otherwise recalcitrant sweet pepper (C. annuum) varieties. Transient activation of BABY BOOM in the progeny plants induced prolific cell regeneration and was used to produce a large number of somatic embryos that could be converted readily to seedlings. The data highlight the utility of combining biotechnology and classical plant tissue culture approaches to develop an efficient transformation and regeneration system for a highly recalcitrant vegetable crop

    ChIP-seq Analysis in R (CSAR): An R package for the statistical detection of protein-bound genomic regions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In vivo </it>detection of protein-bound genomic regions can be achieved by combining chromatin-immunoprecipitation with next-generation sequencing technology (ChIP-seq). The large amount of sequence data produced by this method needs to be analyzed in a statistically proper and computationally efficient manner. The generation of high copy numbers of DNA fragments as an artifact of the PCR step in ChIP-seq is an important source of bias of this methodology.</p> <p>Results</p> <p>We present here an R package for the statistical analysis of ChIP-seq experiments. Taking the average size of DNA fragments subjected to sequencing into account, the software calculates single-nucleotide read-enrichment values. After normalization, sample and control are compared using a test based on the ratio test or the Poisson distribution. Test statistic thresholds to control the false discovery rate are obtained through random permutations. Computational efficiency is achieved by implementing the most time-consuming functions in C++ and integrating these in the R package. An analysis of simulated and experimental ChIP-seq data is presented to demonstrate the robustness of our method against PCR-artefacts and its adequate control of the error rate.</p> <p>Conclusions</p> <p>The software <it>ChIP-seq Analysis in R </it>(CSAR) enables fast and accurate detection of protein-bound genomic regions through the analysis of ChIP-seq experiments. Compared to existing methods, we found that our package shows greater robustness against PCR-artefacts and better control of the error rate.</p

    Tagging of MADS domain proteins for chromatin immunoprecipitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most transcription factors fulfill their role in complexes and regulate their target genes upon binding to DNA motifs located in upstream regions or introns. To date, knowledge about transcription factor target genes and their corresponding transcription factor binding sites are still very limited. Two related methods that allow <it>in vivo </it>identification of transcription factor binding sites are chromatin immunoprecipitation (ChIP) and chromatin affinity purification (ChAP). For ChAP, the protein of interest is tagged with a peptide or protein, which can be used for affinity purification of the protein-DNA complex and hence, the identification of the target gene.</p> <p>Results</p> <p>Here, we present the results of experiments aiming at the development of a generic tagging approach for the Arabidopsis MADS domain proteins AGAMOUS, SEPALLATA3, and FRUITFULL. For this, Arabidopsis wild type plants were transformed with constructs containing a MADS-box gene fused to either a double <it>Strep</it>-tag<sup>® </sup>II-FLAG-tag, a triple HA-tag, or an eGFP-tag, all under the control of the constitutive double 35S Cauliflower Mosaic Virus (CaMV) promoter. Strikingly, in all cases, the number of transformants with loss-of-function phenotypes was much larger than those with an overexpression phenotype. Using endogenous promoters in stead of the 35S CaMV resulted in a dramatic reduction in the frequency of loss-of-function phenotypes. Furthermore, pleiotropic defects occasionally caused by an overexpression strategy can be overcome by using the native promoter of the gene. Finally, a ChAP result is presented using GFP antibody on plants carrying a genomic fragment of a MADS-box gene fused to GFP.</p> <p>Conclusion</p> <p>This study revealed that MADS-box proteins are very sensitive to fusions with small peptide tags and GFP tags. Furthermore, for the expression of chimeric versions of MADS-box genes it is favorable to use the entire genomic region in frame to the tag of choice. Interestingly, though unexpected, it appears that the use of chimeric versions of MADS-box genes under the control of the strong 35S CaMV promoter is a very efficient method to obtain dominant-negative mutants, either caused by cosuppression or by alteration of the activity of the recombinant protein. Finally, we were able to demonstrate AGAMOUS binding to one of its targets by ChAP.</p

    In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana

    Get PDF
    BACKGROUND: MADS domain transcription factors play important roles in various developmental processes in flowering plants. Members of this family play a prominent role in the transition to flowering and the specification of floral organ identity. Several studies reported mRNA expression patterns of the genes encoding these MADS domain proteins, however, these studies do not provide the necessary information on the temporal and spatial localisation of the proteins. We have made GREEN FLUORESCENT PROTEIN (GFP) translational fusions with the four MADS domain proteins SEPALLATA3, AGAMOUS, FRUITFULL and APETALA1 from the model plant Arabidopsis thaliana and analysed the protein localisation patterns in living plant tissues by confocal laser scanning microscopy (CLSM). RESULTS: We unravelled the protein localisation patterns of the four MADS domain proteins at a cellular and subcellular level in inflorescence and floral meristems, during development of the early flower bud stages, and during further differentiation of the floral organs. The protein localisation patterns revealed a few deviations from known mRNA expression patterns, suggesting a non-cell autonomous action of these factors or alternative control mechanisms. In addition, we observed a change in the subcellular localisation of SEPALLATA3 from a predominantly nuclear localisation to a more cytoplasmic localisation, occurring specifically during petal and stamen development. Furthermore, we show that the down-regulation of the homeodomain transcription factor WUSCHEL in ovular tissues is preceded by the occurrence of both AGAMOUS and SEPALLATA3 proteins, supporting the hypothesis that both proteins together suppress WUSCHEL expression in the ovule. CONCLUSION: This approach provides a highly detailed in situ map of MADS domain protein presence during early and later stages of floral development. The subcellular localisation of the transcription factors in the cytoplasm, as observed at certain stages during development, points to mechanisms other than transcriptional control. Together this information is essential to understand the role of these proteins in the regulatory processes that drive floral development and leads to new hypotheses

    The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners

    Get PDF
    Tomato fruit ripening is regulated by transcription factors (TFs), their downstream effector genes, and the ethylene biosynthesis and signalling pathway. Spontaneous non-ripening mutants ripening inhibitor (rin), non-ripening (nor) and Colorless non-ripening (Cnr) correspond with mutations in or near the TF-encoding genes MADS-RIN, NAC-NOR and SPL-CNR, respectively. Here, we produced heterozygous single and double mutants of rin, nor and Cnr and evaluated their functions and genetic interactions in the same genetic background. We showed how these mutations interact at the level of phenotype, individual effector gene expression, and sensory and quality aspects, in a dose-dependent manner. Rin and nor have broadly similar quantitative effects on all aspects, demonstrating their additivity in fruit ripening regulation. We also found that the Cnr allele is epistatic to rin and nor and that its pleiotropic effects on fruit size and volatile production, in contrast to the well-known dominant effect on ripening, are incompletely dominant, or recessive.</p

    SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    Get PDF
    A yeast 3-hybrid screen in Arabidopsis reveals MADS box protein complexes: SEP3 is shown to mediate complex formation and floral timing

    Orchestration of Floral Initiation by APETALA1

    Get PDF
    The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. Although AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, at more advanced stages it also activates regulatory genes required for floral organ formation, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning, and hormonal pathways
    corecore