27 research outputs found

    A new approach for the ortho-positronium lifetime determination in a vacuum cavity

    Full text link
    Currently, the experimental uncertainty for the determination of the ortho-positronium (o-Ps) decay rate is at 150 ppm precision; this is two orders of magnitude lower than the theoretical one, at 1 ppm level. Here we propose a new proof of concept experiment aiming for an accuracy of 100 ppm to be able to test the second-order correction in the calculations, which is ≃45(απ)2≈200\simeq 45\left(\frac{\alpha}{\pi}\right)^2\approx 200 ppm. The improvement relies on a new technique to confine the o-Ps in a vacuum cavity. Moreover, a new method was developed to subtract the time dependent pick-off annihilation rate of the fast backscattered positronium from the o-Ps decay rate prior to fitting the distribution. Therefore, this measurement will be free from the systematic errors present in the previous experiments. The same experimental setup developed for our recent search for invisible decay of ortho-positronium is being used. The precision will be limited by the statistical uncertainty, thus, if the expectations are fulfilled, this experiment could pave the way to reach the ultimate accuracy of a few ppm level to confirm or confront directly the higher order QED corrections. This will provide a sensitive test for new physics, e.g. a discrepancy between theoretical prediction and measurements could hint the existence of an hidden sector which is a possible dark matter candidate.Comment: 12 pages, 8 Figures, prepared for the proceedings of the PSAS2018 conference, Vienna (Austria

    Intense beam of metastable Muonium

    Full text link
    Precision spectroscopy of the Muonium Lamb shift and fine structure requires a robust source of 2S Muonium. To date, the beam-foil technique is the only demonstrated method for creating such a beam in vacuum. Previous experiments using this technique were statistics limited, and new measurements would benefit tremendously from the efficient 2S production at a low energy muon (<20<20 keV) facility. Such a source of abundant low energy μ+\mathrm{\mu^+} has only become available in recent years, e.g. at the Low-Energy Muon beamline at the Paul Scherrer Institute. Using this source, we report on the successful creation of an intense, directed beam of metastable Muonium. We find that even though the theoretical Muonium fraction is maximal in the low energy range of 2−52-5 keV, scattering by the foil and transport characteristics of the beamline favor slightly higher μ+\mathrm{\mu^+} energies of 7−107-10 keV. We estimate that an event detection rate of a few events per second for a future Lamb shift measurement is feasible, enabling an increase in precision by two orders of magnitude over previous determinations

    Development of wide range photon detection system for muonic X-ray spectroscopy

    Full text link
    We have developed a photon detection system for muonic X-ray spectroscopy. The detector system consists of high-purity germanium detectors with BGO Compton suppressors. The signals from the detectors are readout with a digital acquisition system. The absolute energy accuracy, energy and timing resolutions, photo-peak efficiency, the performance of the Compton suppressor, and high count rate durability are studied with standard γ\gamma-ray sources and in-beam experiment using 27Al(p,γ)28Si^{27}\mathrm{Al}(p, \gamma){}^{28}\mathrm{Si} resonance reaction. The detection system was demonstrated at Paul Scherrer Institute. A calibration method for a photon detector at a muon facility using muonic X-rays of 197^{197}Au and 209^{209}Bi is proposed

    First search for invisible decays of orthopositronium confined in a vacuum cavity

    No full text
    International audienceThe experimental setup and results of the first search for invisible decays of orthopositronium (o-Ps) confined in a vacuum cavity are reported. No evidence of invisible decays at a level Br(o-Ps→invisible)<5.9×10-1 (90% C.L.) was found. This decay channel is predicted in hidden sector models such as the mirror matter (MM), which could be a candidate for dark matter. Analyzed within the MM context, this result provides an upper limit on the kinetic mixing strength between ordinary and mirror photons of ϵ<3.1×10-7 (90% C.L.). This limit was obtained for the first time in vacuum free of systematic effects due to collisions with matter

    On two cases of lethal trichloroethylene intoxication

    No full text

    Defining Valid Activity Monitor Data: A Multimethod Analysis of Weight-Loss Intervention Participants’ Barriers to Wear and First 100 Days of Physical Activity

    No full text
    Despite the popularity of commercially available wearable activity monitors (WAMs), there is a paucity of consistent methodology for analyzing large amounts of accelerometer data from these devices. This multimethod study aimed to inform appropriate Fitbit wear thresholds for physical activity (PA) outcomes assessment in a sample of 616 low-income, majority Latina patients with obesity enrolled in a behavioral weight-loss intervention. Secondly, this study aimed to understand intervention participants’ barriers to Fitbit use. We applied a heart rate (HR) criterion (≥10 h/day) and a step count (SC) criterion (≥1000 steps/day) to 100 days of continuous activity monitor data. We examined the prevalence of valid wear and PA outcomes between analytic subgroups of participants who met the HR criterion, SC criterion, or both. We undertook qualitative analysis of research staff notes and participant interviews to explore barriers to valid Fitbit data collection. Overall, one in three participants did not meet the SC criterion for valid wear in Weeks 1 and 13; however, we found the SC criterion to be more inclusive of participants who did not use a smartphone than the HR criterion. Older age, higher body mass index (BMI), barriers to smartphone use, device storage issues, and negative emotional responses to WAM-based self-monitoring may predict higher proportions of invalid WAM data in weight-loss intervention research
    corecore