26 research outputs found
The influence of intensive care treatment in infancy on cortisol levels in childhood and adolescence
Background: Infants admitted to the intensive care unit experience numerous early-life stressors, which may have long-term effects on hypothalamic-pituitary-adrenal axis functioning. Aims: To determine the effects of intensive care treatment and related exposure to stress, pain, and opioids in infancy on cortisol levels in childhood and adolescence. Study design: Cross-sectional study. Subjects: Children and adolescents aged 8 to 18 years with a history of intensive care treatment in infancy and healthy controls. The intensive care treatment cohort consisted of four subgroups with varying levels of exposure to stress, pain, and opioids in infancy. They received either mechanical ventilation, extracorporeal membrane oxygenation, major surgery, or excochleation of a giant congenital melanocytic nevus. Outcome measures: Between-group differences in stress reactivity to a study visit consisting of pain threshold testing and an MRI examination and diurnal cortisol levels, as measured in saliva. Results: After adjustment for age, sex, and gestational age, the diurnal cortisol output (AUCg) in the overall intensive care group (N = 76) was 18 % (approximately 1000 nmol/L) (95 % CI [−31 %, −3 %], P = 0.022) lower than that in the control group (N = 67). Cortisol awakening response, diurnal decline, and stress reactivity neither differed significantly between the overall intensive care group and control group, nor between the intensive care subgroups and control group. Conclusion: Children and adolescents with a history of intensive care treatment in infancy have similar cortisol profiles to those of healthy controls, except for an 18 % lower diurnal cortisol output. The clinical relevance of this reduction is yet to be determined.</p
A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants
Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index.Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p < 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p < 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method.</p
A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants
Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index.Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p < 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p < 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method.</p
Altered functional resting-state hypothalamic connectivity and abnormal pituitary morphology in children with Prader-Willi syndrome
Background: Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder, characterized by endocrine problems and hyperphagia, indicating hypothalamic-pituitary dysfunction. However, few studies have explored the underlying neurobiology of the hypothalamus and its functional connectivity with other brain regions. Thus, the aim of this study was to examine the anatomical differences of the hypothalamus, mammillary bodies, and pituitary gland as well as resting state functional connectivity of the hypothalamus in children with PWS. Methods: Twenty-seven children with PWS (13 DEL, 14 mUPD) and 28 typically developing children were included. Manual segmentations by a blinded investigator were performed to determine the volumes of the hypothalamus, mammillary bodies, and pituitary gland. In addition, brain-wide functional connectivity analysis was performed using the obtained masks of the hypothalamus. Results: Children with PWS showed altered resting state functional connectivity between hypothalamus and right and left lateral occipital complex, compared to healthy controls. In addition, children with PWS had on average a 50% smaller pituitary volume, an irregular shape of the pituitary, and a longer pituitary stalk. Pituitary volume did not increase in volume during puberty in PWS. No volumetric differences in the hypothalamus and mammillary bodies were found. In all subjects, the posterior pituitary bright spot was observed. Conclusions: We report altered functional hypothalamic connectivity with lateral occipital complexes in both hemispheres, which are implicated in response to food and reward system, and absence of connectivity might therefore at least partially contribute to the preoccupation with food in PWS
Biomarkers for assessing pain and pain relief in the neonatal intensive care unit
Newborns admitted to the neonatal intensive care unit (NICU) regularly undergo painful procedures and may face various painful conditions such as postoperative pain. Optimal management of pain in these vulnerable preterm and term born neonates is crucial to ensure their comfort and prevent negative consequences of neonatal pain. This entails accurate and timely identification of pain, non-pharmacological pain treatment and if needed administration of analgesic therapy, evaluation of treatment effectiveness, and monitoring of adverse effects. Despite the widely recognized importance of pain management, pain assessment in neonates has thus far proven to be a challenge. As self-report, the gold standard for pain assessment, is not possible in neonates, other methods are needed. Several observational pain scales have been developed, but these often rely on snapshot and largely subjective observations and may fail to capture pain in certain conditions. Incorporation of biomarkers alongside observational pain scores holds promise in enhancing pain assessment and, by extension, optimizing pain treatment and neonatal outcomes. This review explores the possibilities of integrating biomarkers in pain assessment in the NICU.</p
Current anesthesia practice for preterm infants undergoing surgery for necrotizing enterocolitis:A European survey
Study objective: Necrotizing enterocolitis (NEC) is a life-threatening intestinal illness mostly affecting preterm infants, which commonly requires surgery. Anesthetic care for these patients is challenging, due to their prematurity and critical illness with hemodynamic instability. Currently, there are no guidelines for anesthetic care for these vulnerable patients. Therefore, this study aimed to describe current anesthesia practices across Europe for infants undergoing surgery for NEC. Design: Cross-sectional survey study. Participants: Anesthesiologists working in centers where surgery for NEC is performed across Europe. Measurements: A 46-item questionnaire assessing protocols for anesthesia practice, preoperative care, intraoperative care, postoperative care, and the respondent's opinion on the adequacy of anesthetic care for patients with NEC in their center. Main results: Out of the 173 responding anesthesiologists from 31 countries, approximately a third had a written standard protocol for anesthetic care in infants. Three quarters of the respondents screened all patients with NEC preoperatively, and a third structurally performed preoperative multidisciplinary consultation. For induction of general anesthesia, most respondents opted for intravenous anesthesia (n = 73, 43%) or a combination of intravenous and inhalation anesthesia (n = 57, 33%). For intravenous induction, they mostly used propofol (n = 58, 44%), followed by midazolam (n = 43, 33%) and esketamine (n = 42, 32%). For maintenance of anesthesia, inhalation anesthetic agents were more commonly used (solely: n = 71, 41%; in combination: n = 37, 22%), almost exclusively with sevoflurane. Postoperative analgesics mainly included paracetamol and/or morphine. Sixty percent of the respondents (n = 104) considered their anesthetic care for patients with NEC adequate. Suggestions for further improvement mainly revolved around monitoring, protocols, and collaboration. Conclusions: Anesthesia practice for infants undergoing surgery for NEC was highly variable. Most respondents considered the provided anesthetic care for patients with NEC adequate, but also recognized opportunities for further improvement, especially with regards to monitoring, protocols, and interdisciplinary collaboration.</p
Current anesthesia practice for preterm infants undergoing surgery for necrotizing enterocolitis:A European survey
Study objective: Necrotizing enterocolitis (NEC) is a life-threatening intestinal illness mostly affecting preterm infants, which commonly requires surgery. Anesthetic care for these patients is challenging, due to their prematurity and critical illness with hemodynamic instability. Currently, there are no guidelines for anesthetic care for these vulnerable patients. Therefore, this study aimed to describe current anesthesia practices across Europe for infants undergoing surgery for NEC. Design: Cross-sectional survey study. Participants: Anesthesiologists working in centers where surgery for NEC is performed across Europe. Measurements: A 46-item questionnaire assessing protocols for anesthesia practice, preoperative care, intraoperative care, postoperative care, and the respondent's opinion on the adequacy of anesthetic care for patients with NEC in their center. Main results: Out of the 173 responding anesthesiologists from 31 countries, approximately a third had a written standard protocol for anesthetic care in infants. Three quarters of the respondents screened all patients with NEC preoperatively, and a third structurally performed preoperative multidisciplinary consultation. For induction of general anesthesia, most respondents opted for intravenous anesthesia (n = 73, 43%) or a combination of intravenous and inhalation anesthesia (n = 57, 33%). For intravenous induction, they mostly used propofol (n = 58, 44%), followed by midazolam (n = 43, 33%) and esketamine (n = 42, 32%). For maintenance of anesthesia, inhalation anesthetic agents were more commonly used (solely: n = 71, 41%; in combination: n = 37, 22%), almost exclusively with sevoflurane. Postoperative analgesics mainly included paracetamol and/or morphine. Sixty percent of the respondents (n = 104) considered their anesthetic care for patients with NEC adequate. Suggestions for further improvement mainly revolved around monitoring, protocols, and collaboration. Conclusions: Anesthesia practice for infants undergoing surgery for NEC was highly variable. Most respondents considered the provided anesthetic care for patients with NEC adequate, but also recognized opportunities for further improvement, especially with regards to monitoring, protocols, and interdisciplinary collaboration.</p
Current pain management practices for preterm infants with necrotizing enterocolitis:a European survey
Background: Necrotizing enterocolitis (NEC) is a highly painful intestinal complication in preterm infants that requires adequate pain management to prevent short- and long-term effects of neonatal pain. There is a lack of international guidelines for pain management in NEC patients. Therefore, this study aims to describe current pain management for NEC patients in European neonatal intensive care units (NICUs). Methods: An online survey was designed and conducted to assess current practices in pain management for NEC patients in European NICUs. The survey was distributed via neonatal societies, digital platforms, and professional contacts. Results: Out of the 259 responding unique European NICUs from 36 countries, 61% had a standard protocol for analgesic therapy, 73% assessed pain during NEC, and 92% treated NEC patients with intravenous analgosedatives. There was strong heterogeneity in the used pain scales and initial analgesic therapy, which mainly included acetaminophen (70%), fentanyl (56%), and/or morphine (49%). A third of NICU representatives considered their pain assessment adequate, and half considered their analgesic therapy adequate for NEC patients. Conclusions: Various pain scales and analgesics are used to treat NEC patients in European NICUs. Our results provide the first step towards an international guideline to improve pain management for NEC patients. Impact: This study provides an overview of current pain management practices for infants with necrotizing enterocolitis (NEC) in European neonatal intensive care units.Choice of pain assessment tools, analgosedatives, and dosages vary considerably among NICUs and countries.A third of NICU representatives were satisfied with their current pain assessment practices and half of NICU representatives with their analgesic therapy practices in NEC patients in their NICU.The results of this survey may provide a first step towards developing a European pain management consensus guideline for patients with NEC.</p
A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants
Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index. Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p < 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p < 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method