13 research outputs found

    Comparative Performance Analysis of Different Wind Fields in Southern and North-Western Coastal Areas of the Black Sea

    Get PDF
    This study determines the qualities of atmospheric wind field data in comparison with wind measurements at five locations along the Black Sea coast. For this purpose, four different wind fields were obtained from three different weather centres (NCEP, NASA, and ECMWF). Three of these are reanalyses winds (Climate Forecast System Reanalysis CFSR, Modern-Era Retrospective-analysis for Research and Applications MERRA, ECMWF reanalyses ERA-Interim) and one is the operational dataset (ECMWF operational). The performance of them was determined using the wind measurements from 2000 to 2014 at five coastal locations along the southern coastline of the Black Sea (Kumköy, Amasra, Sinop, Giresun, Hopa) and from 2006 to 2009 at offshore location (Gloria) off the coast of Romania. Performances of these wind fields were determined based on statistical characteristics (mean, standard deviation and variation coefficient etc.), statistical error analysis for all data and for different wind speed intervals, wind roses and probability distributions. Besides, long-term variations of yearly error values (SI and bias) of wind speeds from wind data sources during 2000 - 2014 were discussed. Finally, it was concluded that the CFSR winds give the best performance at most stations. The ECMWF datasets yield better results along the western side but CFSR wind fields have shown better performance along the eastern side of the Black Sea coast and at Gloria offshore location

    Wind and wave characteristics in the Black Sea based on the SWAN wave model forced with the CFSR winds

    No full text
    Wind and wave characteristics and their long-term variability in the Black Sea over a period of 31 years are investigated in this study. The state-of-the art spectral wave model SWAN is implemented to perform a 31 - year wave hindcast in the area of interest. The simulation results are used to assess the inter-annual variability and long-term changes in wind and wave climate in the Black Sea for the period 1979-2009. The SWAN model is forced with the Climate Forecast System Reanalysis (CFSR) winds. The model is calibrated and validated against available wave measurements at six offshore and near-shore locations spread over a large region in the Black Sea. The calibration was performed by tuning parameters in the white-capping and wind input formulations against available measurements for 1996 at three offshore locations (Gelendzhik, Hopa, and Sinop). The validation was carried out using measured data, at Gelendzhik, Hopa, and Sinop offshore locations, Gloria drilling platform and Karaburun and Filyos near-shore locations. From the 31-year simulation results, the long-term spatial distributions and changes of the mean wind and mean and maximum wave characteristics and their inter-annual variabilities were determined. The calibration improved SWAN model performance by 11.6% for H-m0 and 3.3% for T-m02 on average at three locations. The mean annual significant wave height (H-m0) and mean wind speed (WS) indicate the occurrence of higher wave heights and wind speeds in the western Black Sea compared to the south eastern coasts of the Black Sea. The coefficient of variation over the Black Sea for H-m0 and WS shows that the variability for H-m0 is higher than that of WS. It is also observed that the variability for H-m0 is higher in areas (such as offshore Gelendzhik, Russia) where the variability of WS is high. Besides, the storms mentioned in the previous studies (such as Galabov and Kortcheva, 2013; Tarakcioglu et al., 2015) are observed in four interesting characteristic areas with maximum H-m0 determined in this study over the Black Sea.NATO (North Atlantic Treaty Organisation)National Oceanic and Atmospheric AdministrationTurkish Ministry of TransportNIMRDNCEP CF

    Long-term analysis of wave power potential in the Black Sea, based on 31-year SWAN simulations

    No full text
    This study analyzes the wave energy potential in the Black Sea based on long-term model simulations. A dataset covering the period of 1979-2009 is produced using a calibrated numerical wave prediction model (SWAN). This dataset was analyzed in detail to determine the wave energy potential to enable a reliable and optimal design of wave energy conversion devices in the Black Sea. This analysis provides information on the long-term variability as well as on the annual, seasonal and monthly averages. The analysis of the hindcast results is conducted on a spatial and a location scale. The spatial analysis provides information for the entire Black Sea on; the averaged mean wave energy flux over the period 1979-2009, and the decades 1980-1989, 1990-1999, and 2000-2009, seasonal and monthly averages of wave energy flux during 31 years, variability indices for the 1979-2009 period, and variabilities on monthly and seasonality basis based on inter-annual averages during 31 years. The location scale considered nine locations providing information on; wave power roses, probabilities of occurrence and cumulative distribution functions of wave power in different power ranges, variation and trend of yearly average wave power, seasonal average wave power and its annual variations, and quantities of wave energy flux for different H-m0 and Tm-10 ranges. Results show that areas with the highest wave energy potential are located in the south-western part of the Black Sea. These areas are; Burgas - Rezovo (BR) with an average annual total energy of 43.9 MW h/m followed by Dolni Chiflik - Shkorpilovtsi (DCS) with 37.3 MW h/m and Istanbul - Alacali (IA) with 36.1 MW h/m

    Wave model predictions in the Black Sea: Sensitivity to wind fields

    No full text
    This paper evaluates the impact of using different wind field products on the performance of the third generation wave model SWAN in the Black Sea and its capability for predicting both normal and extreme wave conditions during 1996. Wind data were obtained from NCEP CFSR, NASA MERRA, JRA-25, ECMWF Operational, ECMWF ERA40, and ECMWF ERA-Interim. Wave data were obtained in 1996 at three locations in the Black Sea within the NATO TU-WAVES project. The quality of wind fields was assessed by comparing them with satellite data. These wind data were used as forcing fields for the generation of wind waves. Time series of predicted significant wave height (H-mo), mean wave period (T-m02), and mean wave direction (DIR) were compared with observations at three offshore buoys in the Black Sea and its performance was quantified in terms of statistical parameters. In addition, wave model performance in terms of significant wave height was also assessed by comparing them against satellite data. The main scope of this work is the impact of the different available wind field products on the wave hindcast performance. In addition, the sensitivity of wave model forecasts due to variations in spatial and temporal resolutions of the wind field products was investigated. Finally, the impact of using various wind field products on predicting extreme wave events was analyzed by focussing on storm peaks and on an individual storm event in October 1996. The numerical results revealed that the CFSR winds are more suitable in comparison with the others for modelling both normal and extreme events in the Black Sea. The results also show that wave model output is critically sensitive to the choice of the wind field product, such that the quality of the wind fields is reflected in the quality of the wave predictions. A finer wind spatial resolution leads to an improvement of the wave model predictions, while a finer temporal resolution in the wind fields generally does not significantly improve agreement between observed and simulated wave data.NATO Science for Stability Progra

    Modelling of wind waves in the sea of the Marmara

    No full text
    corecore