8,445 research outputs found

    He Scattering from Random Adsorbates, Disordered Compact Islands and Fractal Submonolayers: Intensity Manifestations of Surface Disorder

    Full text link
    A theoretical study is made on He scattering from three fundamental classes of disordered ad-layers: (a) Translationally random adsorbates, (b) disordered compact islands and (c) fractal submonolayers. The implications of the results to experimental studies of He scattering from disordered surfaces are discussed, and a combined experimental-theoretical study is made for Ag submonolayers on Pt(111). Some of the main theoretical findings are: (1) Structural aspects of the calculated intensities from translationally random clusters were found to be strongly correlated with those of individual clusters. (2) Low intensity Bragg interference peaks appear even for scattering from very small ad-islands, and contain information on the ad-island local electron structure. (3) For fractal islands, just as for islands with a different structure, the off-specular intensity depends on the parameters of the He/Ag interaction, and does not follow a universal power law as previously proposed in the literature. In the experimental-theoretical study of Ag on Pt(111), we use first experimental He scattering data from low-coverage (single adsorbate) systems to determine an empirical He/Ag-Pt potential of good quality. Then, we carry out He scattering calculations for high coverage and compare with experiments. The conclusions are that the actual experimental phase corresponds to small compact Ag clusters of narrow size distribution, translationally disordered on the surface.Comment: 36 double-spaced pages, 10 figures; accepted by J. Chem. Phys., scheduled to appear March 8. More info available at http://www.fh.huji.ac.il/~dani

    Universal temperature dependence of the conductivity of a strongly disordered granular metal

    Full text link
    A disordered array of metal grains with large and random intergrain conductances is studied within the one-loop accuracy renormalization group approach. While at low level of disorder the dependence of conductivity on log T is nonuniversal (it depends on details of the array's geometry), for strong disorder this dependence is described by a universal nonlinear function, which depends only on the array's dimensionality. In two dimensions this function is found numerically. The dimensional crossover in granular films is discussed.Comment: 6 pages, 6 figures, submitted to JETP Letter

    Exciton states in monolayer MoSe2: impact on interband transitions

    Full text link
    We combine linear and non-linear optical spectroscopy at 4K with ab initio calculations to study the electronic bandstructure of MoSe2 monolayers. In 1-photon photoluminescence excitation (PLE) and reflectivity we measure a separation between the A- and B-exciton emission of 220 meV. In 2-photon PLE we detect for the A- and B-exciton the 2p state 180meV above the respective 1s state. In second harmonic generation (SHG) spectroscopy we record an enhancement by more than 2 orders of magnitude of the SHG signal at resonances of the charged exciton and the 1s and 2p neutral A- and B-exciton. Our post-Density Functional Theory calculations show in the conduction band along the KΓK-\Gamma direction a local minimum that is energetically and in k-space close to the global minimum at the K-point. This has a potentially strong impact on the polarization and energy of the excitonic states that govern the interband transitions and marks an important difference to MoS2 and WSe2 monolayers.Comment: 8 pages, 3 figure

    Variable range cotunneling and conductivity of a granular metal

    Full text link
    The Efros-Shklovskii law for the conductivity of granular metals is interpreted as a result of a variable range cotunneling process. The cotunneling between distant resonant grains is predominantly elastic at low T << T_c, while it is inelastic (i.e., accompanied by creation of electron-hole pairs on a string of intermediate non-resonant grains) at T > T_c. The corresponding E-S temperature T_ES in the latter case is slightly (logarithmically) T-dependent. The magnetoresistance in the two cases is different: it may be relatively strong and negative at T much below T_c, while at T>T_c it is suppressed due to inelastic processes which destroy the interference.Comment: Submitted to JETP Letter

    Negative Magnetoresistance of Granular Metals in a Strong Magnetic Field

    Full text link
    The magnetoresistance of a granular superconductor in a strong magnetic field destroying the gap in each grain is considered. It is assumed that the tunneling between grains is sufficiently large such that all conventional effects of localization can be neglected. A non-trivial sensitivity to the magnetic field comes from superconducting fluctuations leading to the formation of virtual Cooper pairs and reducing the density of states. At low temperature, the pairs do not contribute to the macroscopic transport but their existence can drastically reduce the conductivity. Growing the magnetic field one destroys the fluctuations, which improves the metallic properties and leads to the negative magnetoresistance.Comment: 4 pages, 1 figure, RevTe

    Proximity effect in granular superconductor-normal metal structures

    Full text link
    We fabricated three-dimensional disordered Pb-Cu granular structures, with various metal compositions. The typical grain size of both metals is smaller than the superconductor and normal metal coherence lengths, thus satisfying the Cooper limit. The critical temperature of the samples was measured and compared with the critical temperature of bilayers. We show how the proximity effect theories, developed for bilayers, can be modified for random mixtures and we demonstrate that our experimental data fit well the de Gennes weak coupling limit theory in the Cooper limit. Our results indicate that, in granular structures, the Cooper limit can be satisfied over a wide range of concentrations.Comment: 15 pages, 4 figure

    Magnetoresistance of Granular Superconducting Metals in a Strong Magnetic Field

    Full text link
    The magnetoresistance of a granular superconductor in a strong magnetic field is considered. It is assumed that this field destroys the superconducting gap in each grain, such that all interesting effects considered in the paper are due to superconducting fluctuations. The conductance of the system is assumed to be large, which allows us to neglect all localization effects as well as the Coulomb interaction. It is shown that at low temperatures the superconducting fluctuations reduce the one-particle density of states but do not contribute to transport. As a result, the resistivity of the normal state exceeds the classical resistivity approaching the latter only in the limit of extremely strong magnetic fields, and this leads to a negative magnetoresistance. We present detailed calculations of physical quatities relevant for describing the effect and make a comparison with existing experiments.Comment: 24 pages, 10 figure

    Inversion of Randomly Corrugated Surfaces Structure from Atom Scattering Data

    Full text link
    The Sudden Approximation is applied to invert structural data on randomly corrugated surfaces from inert atom scattering intensities. Several expressions relating experimental observables to surface statistical features are derived. The results suggest that atom (and in particular He) scattering can be used profitably to study hitherto unexplored forms of complex surface disorder.Comment: 10 pages, no figures. Related papers available at http://neon.cchem.berkeley.edu/~dan

    Low temperature relation for the trace of the energy-momentum tensor in QCD with light quarks

    Get PDF
    It is shown that the temperature derivatives of the anomalous and normal (quark massive term) contributions to the trace of the energy-momentum tensor in QCD are equal to each other in the low temperature region. The physical consequences of this relation are discussed.Comment: RevTeX, 4 pages, no figure

    Vortex lattice studies in CeCoIn5 with H perpendicular to c

    Full text link
    We present small angle neutron scattering studies of the vortex lattice (VL) in CeCoIn5 with magnetic fields applied parallel (H) to the antinodal [100] and nodal [110] directions. For H || [100], a single VL orientation is observed, while a 90 degree reorientation transition is found for H || [110]. For both field orientations and VL configurations we find a distorted hexagonal VL with an anisotropy, Gamma = 2.0 +/- 0.05. The VL form factor shows strong Pauli paramagnetic effects similar to what have previously been reported for H || [001]. At high fields, above which the upper critical field (Hc2) becomes a first-order transition, an increased disordering of the VL is observed.Comment: 5 pages, 4 figure
    corecore