2,088 research outputs found

    O(N) Models with Topological Lattice Actions

    Get PDF
    A variety of lattice discretisations of continuum actions has been considered, usually requiring the correct classical continuum limit. Here we discuss "weird" lattice formulations without that property, namely lattice actions that are invariant under most continuous deformations of the field configuration, in one version even without any coupling constants. It turns out that universality is powerful enough to still provide the correct quantum continuum limit, despite the absence of a classical limit, or a perturbative expansion. We demonstrate this for a set of O(N) models (or non-linear σ\sigma-models). Amazingly, such "weird" lattice actions are not only in the right universality class, but some of them even have practical benefits, in particular an excellent scaling behaviour.Comment: 7 pages, LaTex, 4 figures, 1 table, talk presented at the 31st Symposium on Lattice Field Theor

    Assessing daily energy intake in adult women:validity of a food-recognition mobile application compared to doubly labelled water

    Get PDF
    Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland–Altman plots, paired difference tests, and Pearson’s correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = −329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = −543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p &lt; 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings. Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596).</p

    Assessing daily energy intake in adult women:validity of a food-recognition mobile application compared to doubly labelled water

    Get PDF
    Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland–Altman plots, paired difference tests, and Pearson’s correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = −329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = −543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p &lt; 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings. Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596).</p

    Assessing daily energy intake in adult women:validity of a food-recognition mobile application compared to doubly labelled water

    Get PDF
    Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland–Altman plots, paired difference tests, and Pearson’s correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = −329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = −543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p &lt; 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings. Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596).</p

    Assessing daily energy intake in adult women:validity of a food-recognition mobile application compared to doubly labelled water

    Get PDF
    Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland–Altman plots, paired difference tests, and Pearson’s correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = −329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = −543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p &lt; 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings. Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596).</p

    Spectroscopy of a single-carrier bilayer graphene quantum dot from time-resolved charge detection

    Full text link
    We measured the spectrum of a single-carrier bilayer graphene quantum dot as a function of both parallel and perpendicular magnetic fields, using a time-resolved charge detection technique that gives access to individual tunnel events. Thanks to our unprecedented energy resolution of 4μ \mu~eV, we could distinguish all four levels of the dot's first orbital, in particular in the range of magnetic fields where the first and second excited states cross (B100 B_\perp\lesssim 100~mT). We thereby experimentally establish, the hitherto extrapolated, single-charge carrier spectrum picture and provide a new upper bound for the inter-valley mixing, equal to our energy resolution

    Domain-dependent surface adhesion in twisted few-layer graphene: Platform for moir\'e-assisted chemistry

    Full text link
    Twisted van der Waals multilayers are widely regarded as a rich platform to access novel electronic phases, thanks to the multiple degrees of freedom such as layer thickness and twist angle that allow control of their electronic and chemical properties. Here, we propose that the stacking domains that form naturally due to the relative twist between successive layers act as an additional "knob" for controlling the behavior of these systems, and report the emergence and engineering of stacking domain-dependent surface chemistry in twisted few-layer graphene. Using mid-infrared near-field optical microscopy and atomic force microscopy, we observe a selective adhesion of metallic nanoparticles and liquid water at the domains with rhombohedral stacking configurations of minimally twisted double bi- and tri-layer graphene. Furthermore, we demonstrate that the manipulation of nanoparticles located at certain stacking domains can locally reconfigure the moir\'e superlattice in their vicinity at the {\mu}m-scale. In addition, we report first-principles simulations of the energetics of adhesion of metal atoms and water molecules on the stacking domains in an attempt to elucidate the origin of the observed selective adhesion. Our findings establish a new approach to controlling moir\'e-assisted chemistry and nanoengineering.Comment: 11 pages, 3 figure

    Assessing daily energy intake in adult women: validity of a food-recognition mobile application compared to doubly labelled water

    Get PDF
    Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland–Altman plots, paired difference tests, and Pearson’s correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = −329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = −543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p &lt; 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings.Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596)

    The proadhesive phenotype of systemic sclerosis skin promotes myeloid cell adhesion via ICAM-1 and VCAM-1

    Full text link
    Objective. SSc is characterized by microvascular abnormalities and leucocyte infiltration. Previous studies have suggested a proadhesive phenotype in SSc skin, but the functional consequences of this phenotype are not fully understood. Molecules known to mediate leucocyte adhesion include those present at intracellular junctions, such as junctional adhesion molecule-B (JAM-B), JAM-C and CD99, as well as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). The aim of this study was to examine adhesive interactions in SSc skin. Methods. The expression of JAM-B, JAM-C, CD99, ICAM-1 and VCAM-1 in SSc skin was determined by immunohistology and cell surface ELISA. Myeloid U937 cell–SSc dermal fibroblast adhesion assays or in situ adhesion assays to SSc skin were performed. Results. JAM-C and CD99 expression on endothelial cells (ECs) in SSc skin was decreased compared with expression on normal ECs. CD99 was overexpressed on mononuclear cells in SSc skin and on SSc dermal fibroblasts. Neutralizing ICAM-1 inhibited the binding of U937 cells to SSc dermal fibroblasts. In addition, blocking both ICAM-1 and VCAM-1 inhibited U937 cell adhesion to either proximal (less involved) or distal (more involved) SSc skin. Conclusions. These studies show that JAM-C and CD99 are aberrantly expressed in SSc skin. However, these adhesion molecules do not mediate myeloid cell–SSc skin adhesion. In contrast, we demonstrate an important role for ICAM-1 and VCAM-1 in the retention of myeloid cells in SSc skin, suggesting that targeting these molecules may be useful SSc therapies.NIH (grants AI-40987, AR-48267 and AR-19616)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77484/1/Rheumatology 48; 734-740, 2009.pdf-
    corecore