594 research outputs found

    Structural and symptomatic change in psychoanalysis and psychodynamic psychotherapy: a quantitative study of process, outcome, and attachment.

    Get PDF
    This thesis describes a quasi-experimental study exploring psychotherapeutic process and outcome in 25 young adults sequentially assigned to psychoanalysis (n=14) or psychodynamic psychotherapy (n=11) at the Anna Freud Centre in London, England. Analysts reported process using a novel 899-item questionnaire, the Young Adult Weekly Rating Scale (YAWRS). Patients were assessed by an independent psychiatrist at intake, termination, and at 18 month intervals after intake and termination with Main and Goldwyn's Adult Attachment Interview (AAI) and on a host of symptomatic and diagnostic measures. The patients suffered from depression, anxiety, and personality disorders. Over the course of treatment (6 months to 8 years long), 12 of 19 patients (with adequate data) improved symptomatically on an aggregate measure. Ten of 12 improvers were in the psychoanalysis group, suggesting that it is a more effective treatment in this population. Data from 1,314 YAWRS questionnaires were factor analysed and used to test hypotheses from the psychotherapy process literature. In the first year of psychoanalysis (as compared with psychodynamic psychotherapy), higher scores on therapist dynamic technique, patient dynamic material, and negative patient transference were found. In the combined sample, higher scores in the first year on therapist dynamic technique, patient dynamic material, and discussion of contract were predictive of positive outcome. The AAI classifies patients according to security of "state of mind with respect to attachment" from narratives about early life relationship experiences. Our results show a high proportion of secure classifications at initial assessment and, in successful treatments, a movement towards a preoccupied-entangled attachment pattern which began to resolve by termination. We propose that the AAI be used to measure both structural health and regression/transference neurosis, which must occur and then resolve for treatment to succeed. Further research using the YAWRS and AAI is proposed

    Neural correlates of subjective arousal and valence in health and panic disorder

    Get PDF
    Aberrant emotion processing is a core characteristic of panic disorder (PD). Findings concerning the underlying neural pathways remain inconsistent. We applied functional magnetic resonance imaging (fMRI) in the context of a task based on the circumplex model of affect. This model links affective states to two underlying neurophysiological systems: arousal and valence. Twenty-two healthy participants and 20 participants with PD rated arousal and valence in response to affective faces during fMRI. In healthy controls, we found that arousal modulated the hemodynamic response in the parahippocampus, the ventromedial prefrontal cortex and the cuneus during face perception. Valence and extreme ratings of valence modulated the hemodynamic response in temporal, parietal, somatosensory, premotor and cerebellar regions. Comparing healthy controls to participants with PD, we found that healthy controls showed a stronger modulation of the hemodynamic response during face perception associated with extreme ratings of valence in the parahippocampus and the supplementary motor area. This suggests parahippocampal dysfunction in the processing of highly valenced affective faces in PD, which may underlie aberrant contextualization of strong affective stimuli. Our findings need to be interpreted with care as they were adjusted for multiple comparisons using a liberal correction procedure

    Pion propagation in real time field theory at finite temperature

    Get PDF
    We describe how the thermal counterpart of a vacuum two-point function may be obtained in the real time formalism in a simple way by using directly the 2×22\times 2 matrices that different elements acquire in this formalism. Using this procedure we calculate the analytic (single component) thermal amplitude for the pion pole term in the ensemble average of two axial-vector currents to two loops in chiral perturbation theory. The general expressions obtained for the effective mass and decay constants of the pion are evaluated in the chiral and the nonrelativistic limits. We also investigate the effect of massive states on these effective parameters.Comment: 17 pages TeX and 9 eps figure

    Assessing daily energy intake in adult women:validity of a food-recognition mobile application compared to doubly labelled water

    Get PDF
    Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland–Altman plots, paired difference tests, and Pearson’s correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = −329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = −543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p &lt; 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings. Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596).</p

    Assessing daily energy intake in adult women:validity of a food-recognition mobile application compared to doubly labelled water

    Get PDF
    Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland–Altman plots, paired difference tests, and Pearson’s correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = −329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = −543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p &lt; 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings. Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596).</p

    Assessing daily energy intake in adult women:validity of a food-recognition mobile application compared to doubly labelled water

    Get PDF
    Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland–Altman plots, paired difference tests, and Pearson’s correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = −329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = −543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p &lt; 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings. Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596).</p

    Assessing daily energy intake in adult women:validity of a food-recognition mobile application compared to doubly labelled water

    Get PDF
    Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland–Altman plots, paired difference tests, and Pearson’s correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = −329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = −543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p &lt; 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings. Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596).</p

    A strongly first order electroweak phase transition from strong symmetry-breaking interactions

    Get PDF
    We argue that a strongly first order electroweak phase transition is natural in the presence of strong symmetry-breaking interactions, such as technicolor. We demonstrate this using an effective linear scalar theory of the symmetry-breaking sector.Comment: LaTex, 15 pages, 3 figures in EPS format. Phys. Rev. D approved Typographically Correct version, minor grammatical change

    Theoretical study of the absorption spectra of the sodium dimer

    Full text link
    Absorption of radiation from the sodium dimer molecular states correlating to Na(3s)-Na(3s) is investigated theoretically. Vibrational bound and continuum transitions from the singlet X Sigma-g+ state to the first excited singlet A Sigma-u+ and singlet B Pi-u states and from the triplet a Sigma-u+ state to the first excited triplet b Sigma-g+ and triplet c Pi-g states are studied quantum-mechanically. Theoretical and experimental data are used to characterize the molecular properties taking advantage of knowledge recently obtained from ab initio calculations, spectroscopy, and ultra-cold atom collision studies. The quantum-mechanical calculations are carried out for temperatures in the range from 500 to 3000 K and are compared with previous calculations and measurements where available.Comment: 19 pages, 8 figures, revtex, eps

    Quantum phase transitions and thermodynamic properties in highly anisotropic magnets

    Full text link
    The systems exhibiting quantum phase transitions (QPT) are investigated within the Ising model in the transverse field and Heisenberg model with easy-plane single-site anisotropy. Near QPT a correspondence between parameters of these models and of quantum phi^4 model is established. A scaling analysis is performed for the ground-state properties. The influence of the external longitudinal magnetic field on the ground-state properties is investigated, and the corresponding magnetic susceptibility is calculated. Finite-temperature properties are considered with the use of the scaling analysis for the effective classical model proposed by Sachdev. Analytical results for the ordering temperature and temperature dependences of the magnetization and energy gap are obtained in the case of a small ground-state moment. The forms of dependences of observable quantities on the bare splitting (or magnetic field) and renormalized splitting turn out to be different. A comparison with numerical calculations and experimental data on systems demonstrating magnetic and structural transitions (e.g., into singlet state) is performed.Comment: 46 pages, RevTeX, 6 figure
    • 

    corecore