159 research outputs found

    The specific entropy of elliptical galaxies: an explanation for profile-shape distance indicators?

    Get PDF
    Dynamical systems in equilibrium have a stationary entropy; we suggest that elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may have a unique specific entropy. This uniqueness, a priori unknown, should be reflected in correlations between the parameters describing the mass (light) distribution in galaxies. Following recent photometrical work (Caon et al. 1993; Graham & Colless 1997; Prugniel & Simien 1997), we use the Sersic law to describe the light profile of elliptical galaxies and an analytical approximation to its three dimensional deprojection. The specific entropy is calculated supposing that the galaxy behaves as a spherical, isotropic, one-component system in hydrostatic equilibrium, obeying the ideal gas state equations. We predict a relation between the 3 parameters of the Sersic, defining a surface in the parameter space, an `Entropic Plane', by analogy with the well-known Fundamental Plane. We have analysed elliptical galaxies in Coma and ABCG 85 clusters and a group of galaxies (associated with NGC 4839). We show that the galaxies in clusters follow closely a relation predicted by the constant specific entropy hypothesis with a one-sigma dispersion of 9.5% around the mean value of the specific entropy. Assuming that the specific entropy is also the same for galaxies of different clusters, we are able to derive relative distances between the studied clusters. If the errors are only due to the determination of the specific entropy (about 10%), then the error in the relative distance determination should be less than 20% for rich clusters. We suggest that the unique specific entropy may provide a physical explanation for the distance indicators based on the Sersic profile put forward by Young & Currie (1994, 1995) and discussed by Binggeli & Jerjen (1998).Comment: Submitted to MNRAS (05/05/99), 15 pages, 10 figure

    MOND mass-to-light ratios for galaxy groups

    Get PDF
    I estimate MOND M/L values for nine galaxy groups that were recently studied by Tully et al.. Instead of the large M/L values that they find with Newtonian dynamics (up to 1200 solar units) the MOND estimates cluster around 1 solar unit. Tully et al. find a systematic and significant difference between the M/L values of groups that do not contain luminous galaxies and those that do: Dwarfs-only groups have larger M/L values (by a factor of about 5). The MOND M/L values do not show this trend; the Newtonian disparity is traced back to the dwarfs-only groups having systematically smaller intrinsic accelerations (similar sizes, but rather smaller velocity dispersions).Comment: 7 pages, Astrophys. J. Lett., in pres

    The rich cluster of galaxies ABCG~85. IV. Emission line galaxies, luminosity function and dynamical properties

    Get PDF
    This paper is the fourth of a series dealing with the cluster of galaxies ABCG 85. Using our two extensive photometric and spectroscopic catalogues (with 4232 and 551 galaxies respectively), we discuss here three topics derived from optical data. First, we present the properties of emission line versus non-emission line galaxies, showing that their spatial distributions somewhat differ; emission line galaxies tend to be more concentrated in the south region where groups appear to be falling onto the main cluster, in agreement with the hypothesis (presented in our previous paper) that this infall may create a shock which can heat the X-ray emitting gas and also enhance star formation in galaxies. Then, we analyze the luminosity function in the R band, which shows the presence of a dip similar to that observed in other clusters at comparable absolute magnitudes; this result is interpreted as due to comparable distributions of spirals, ellipticals and dwarfs in these various clusters. Finally, we present the dynamical analysis of the cluster using parametric and non-parametric methods and compare the dynamical mass profiles obtained from the X-ray and optical data.Comment: accepted for publication in A&

    The rich cluster of galaxies ABCG 85. III. Analyzing the ABCG 85/87/89 complex

    Full text link
    We present a combined X-ray and optical analysis of the ABCG 85/87/89 complex of clusters of galaxies, based on the ROSAT PSPC image, optical photometric catalogues (Slezak et al. 1998), and an optical redshift catalogue (Durret et al. 1998). From this combined data set, we find striking alignments at all scales at PA\simeq160\deg. At small scales, the cD galaxy in ABCG 85 and the brightest galaxies in the cluster are aligned along this PA. At a larger scale, X-ray emission defines a comparable PA south-southeast of ABCG 85 towards ABCG 87, with a patchy X-ray structure very different from the regular shape of the optical galaxy distribution in ABCG 87. The galaxy velocities in the ABCG 87 region show the existence of subgroups, which all have an X-ray counterpart, and seem to be falling onto ABCG 85 along a filament almost perpendicular to the plane of the sky. To the west of ABCG 85, ABCG 89 appears as a significant galaxy density enhancement, but is barely detected at X-ray wavelengths. The galaxy velocities reveal that in fact this is not a cluster but two groups with very different velocities superimposed along the line of sight. These two groups appear to be located in intersecting sheets on opposite sides of a large bubble. These data and their interpretation reinforce the cosmological scenario in which matter, including galaxies, groups and gas, falls onto the cluster along a filament.Comment: accepted for publication in Astronomy & Astrophysic

    Does MOND follow from the CDM paradigm?

    Get PDF
    In a recent paper, Kaplinghat and Turner (2001) (KT) advertise that MOND can be derived naturally in the CDM paradigm. They actually proceed to produce a more limited result: Every galaxy should have a transition radius, rtr_t, below which baryons dominate, and above which dark matter (DM) takes over; the acceleration at rtr_t is nearly the same for all galaxies; and due to a coincidences this is of order a0cH0a_0\sim cH_0. This follows from their tacit, intermediate result, whereby CDM halos of galaxies have a very nearly universal acceleration profile a(r)v2(r)/rAa^(r/)a(r)\approx v^2(r)/r\approx A\hat a(r/\ell), where A is universal, and only the scale \ell varies from halo to halo. (This remains so when baryons are added because they assume a universal baryon-collapse factor.) The KT scenario is phenomenologically wrong--observed galaxies are simply not like that. For example, it precludes altogether the existence of LSB galaxies, in which the acceleration is everywhere smaller than a0a_0. The phenomenologically sound outcome--i.e., the role of a0a_0 as a transition acceleration in high-surface-brightness galaxies--pertains to only a small part of the statement of MOND. There are several other, independent roles that a0cH0a_0\sim cH_0 plays in MOND phenomenology, and other predictions of MOND, not related to the value of a0a_0, that are not explainable in the KT scenario. The results of KT also disagree with those of CDM simulations, which, as they now stand, do not reproduce any aspect of MOND phenomenology.Comment: 6 page

    Unveiling hidden structures in the Coma cluster

    Get PDF
    We have assembled a large data-set of 613 galaxy redshifts in the Coma cluster, the largest presently available for a cluster of galaxies. We have defined a sample of cluster members complete to b26.5=20.0_{26.5}=20.0, using a membership criterion based on the galaxy velocity, when available, or on the galaxy magnitude and colour, otherwise. Such a data set allows us to define nearly complete samples within a region of 1~\Mpc\ radius, with a sufficient number of galaxies per sample to make statistical analyses possible. Using this sample and the {\em ROSAT} PSPC X--ray image of the cluster, we have re-analyzed the structure and kinematics of Coma, by applying the wavelet and adaptive kernel techniques. A striking coincidence of features is found in the distributions of galaxies and hot intracluster gas. The two central dominant galaxies, NGC4874 and NGC4889, are surrounded by two galaxy groups, mostly populated with galaxies brighter than b26.5=17_{26.5}=17 and well separated in velocity space. On the contrary, the fainter galaxies tend to form a single smooth structure with a central peak coinciding in position with a secondary peak detected in X--rays, and located between the two dominant galaxies; we suggest to identify this structure with the main body of the Coma cluster. A continuous velocity gradient is found in the central distribution of these faint galaxies, a probable signature of tidal interactions rather than rotation. There is evidence for a bound population of bright galaxies around other brightest cluster members. Altogether, the Coma cluster structure seems to be better traced by the faint galaxy population, the bright galaxies being located in subclusters. We discuss this evidence in terms of an ongoing accretion of groups onto the cluster.Comment: to appear in A&A, 19 pages, uuencoded gzipped postscript fil

    On the galaxy luminosity function in the central regions of the Coma cluster

    Get PDF
    We have obtained new redshifts for 265 objects in the central 48~×\times~25~arcmin2^2 region of the Coma cluster. When supplemented with literature data, our redshift sample is 95~\% complete up to a magnitude b26.5_{26.5}=18.0 (the magnitudes are taken from the photometric sample of Godwin et al. 1983). Using redshift-confirmed membership for 205 galaxies, and the location in the colour-magnitude diagram for another 91 galaxies, we have built a sample of cluster members which is complete up to b26.5_{26.5}=20.0. We show that the Coma cluster luminosity function cannot be adequately fitted by a single Schechter (1976) function, because of a dip in the magnitude distribution at b26.5_{26.5}\sim17. The superposition of an Erlang (or a Gauss) and a Schechter function provides a significantly better fit. We compare the luminosity function of Coma to those of other clusters, and of the field. Luminosity functions for rich clusters look similar, with a maximum at Mb19.5+5×logh50M_{b} \simeq -19.5 + 5 \times \log h_{50}, while the Virgo and the field luminosity functions show a nearly monotonic behaviour. These differences may be produced by physical processes related to the environment which affect the luminosities of a certain class of cluster galaxies.Comment: 7 pages, uuencoded postscript file (figures included) Accepted for publication on A&

    Problems for MOND in Clusters and the Ly-alpha Forest

    Full text link
    The observed dynamics of gas and stars on galactic and larger scales cannot be accounted for by self-gravity, indicating that there are large quantities of unseen matter, or that gravity is non-Newtonian in these regimes. Milgrom's MOdified Newtonian Dynamics (MOND) postulates that Newton's laws are modified at very low acceleration, and can account for the rotation curves of galaxies and some other astrophysical observations, without dark matter. Here we apply MOND to two independent physical systems: Ly-alpha absorbers and galaxy clusters. While physically distinct, both are simple hydrodynamical systems with characteristic accelerations in the MOND regime. We find that Ly-alpha absorbers are somewhat smaller than in Newtonian gravity with dark matter, but the result depends crucially on the (unknown) background acceleration field in which they are embedded. In clusters MOND appears to explain the observed (baryonic) mass-temperature relation. However, given observed gas density and enclosed mass profiles and the assumption of hydrostatic equilibrium, MOND predicts radial temperature profiles which disagree badly with observations. We show this explicitly for the Virgo, Abell 2199 and Coma clusters, but the results are general, and seem very difficult to avoid. If this discrepancy is to be resolved by positing additional (presumably baryonic) dark matter, then this dark matter must have ~1-3 times the cluster gas mass within 1 Mpc. This result strongly disfavors MOND as an alternative to dark matter (Abridged).Comment: Revised version. Important caveat in Ly-alpha calculation discussed; conclusions weakened. Coma cluster and calculation of dark matter mass required by MOND added; cluster conclusions strengthened. 11 EmulateApJ pages with 3 embedded figures. Accepted by Ap

    Gravitational polarization and the phenomenology of MOND

    Full text link
    The modified Newtonian dynamics (MOND) has been proposed as an alternative to the dark matter paradigm; the philosophy behind is that there is no dark matter and we witness a violation of the Newtonian law of dynamics. In this article, we interpret differently the phenomenology sustaining MOND, as resulting from an effect of "gravitational polarization", of some cosmic fluid made of dipole moments, aligned in the gravitational field, and representing a new form of dark matter. We invoke an internal force, of non-gravitational origin, in order to hold together the microscopic constituents of the dipole. The dipolar particles are weakly influenced by the distribution of ordinary matter; they are accelerated not by the gravitational field, but by its gradient, or tidal gravitational field.Comment: 14 pages, 1 figure, to appear in Classical and Quantum Gravit
    corecore