10 research outputs found

    Establishment of a global three-dimensional kinematic reference frame using VLBI and DORIS data

    No full text
    The main aim of this paper is to provide an algorithm to combine VLBI (Very Long Baseline Interferometry) and DORIS (Doppler Orbitography and Radio positioning Integrated by Satellite) data sets into the same kinematics reference frame. In a rst stage of computation the VLBI and DORIS networks are knitted together using the velocities of each station with their covariance matrices that were obtained from individual solutions. A sequential least squares adjustment was used. In a second stage of computation a method of iterative weighted similarity transformation has been elaborated. In order to x the three-dimensional kinematic reference frame (KRF), a system of constraints or datum equations based on vertical component of some quasi-stable reference stations are used. This strategy provides a datum that is robust to unstable reference points and gives less distorted displacements. This method has been applied to the VLBI and DORIS data collected during the last decades. Without survey ties available, and consequently without relative velocities between collocated VLBI and DORIS points, we forced the velocities of collocated sites to the same value and constrained their root mean squares to be equal to zero. As VLBI information is formally for some stations ten times more precise than the DORIS information, reference frame and precision of the VLBI stations were practically not aected by this computation. But precision of DORIS station velocities of the joint network is improved by almost 15% and fairly close agreement between ITRF2000 solution, NNR Nuvel-1A model predictions, and our solution has been found. The technique presented provides a method to dene KRF without any information from a geological plate motion model. It is thus possible to verify any geological model using only geodetic information itself

    The Arabidopsis Nuclear Pore and Nuclear Envelope

    No full text
    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and—through the nuclear envelope lumen—the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research—predominantly focusing on Arabidopsis as a model—is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration
    corecore