139 research outputs found

    Stellar diameters and temperatures. IV. Predicting stellar angular diameters

    Get PDF
    The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry. We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broadband color indices. We empirically show for the first time a dependence on metallicity of these relations using Johnson (B-V) and Sloan (g-r) colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations of stellar angular sizes to date. © 2014. The American Astronomical Society. All rights reserved.

    Infrared interferometric observations of T Tauri stars

    Get PDF
    We present observations of several T Tauri stars using long baseline infrared interferometry from the Palomar Testbed Interferometer. The target sources, T Tau N, SU Aur, RY Tau and DR Tau, are all known to be surrounded by dusty circumstellar disks. The observations directly trace the inner regions (<1 AU) of the disk and can be used to constrain the physical properties of this material. For three of the sources observed, the size scale of the infrared emission is tenths of AU, which is considerably larger than predicted by flat disk models. We discuss the implications of these results for models of circumstellar material, in particular the recent theoretical work suggesting the presence of an extended vertical wall at the inner edge of the disk

    Spitzer 24-micron Time-Series Observations of the Eclipsing M-dwarf Binary GU Bootis

    Full text link
    We present a set of {\it Spitzer} 24μ\mum MIPS time series observations of the M-dwarf eclipsing binary star GU Bo\"otis. Our data cover three secondary eclipses of the system: two consecutive events and an additional eclipse six weeks later. The study's main purpose is the long wavelength (and thus limb darkening-independent) characterization of GU Boo's light curve, allowing for independent verification of the results of previous optical studies. Our results confirm previously obtained system parameters. We further compare GU Boo's measured 24μ\mum flux density to the value predicted by spectral fitting and find no evidence for circumstellar dust. In addition to GU Boo, we characterize (and show examples of) light curves of other objects in the field of view. Analysis of these light curves serves to characterize the photometric stability and repeatability of {\it Spitzer's} MIPS 24\micron array over short (days) and long (weeks) timescales at flux densities between approximately 300--2,000μ\muJy. We find that the light curve root mean square about the median level falls into the 1--4% range for flux densities higher than 1mJy. Finally, we comment on the fluctuations of the 24\micron background on short and long timescales.Comment: ApJ accepted. 10 pages, 12 figure
    corecore