18 research outputs found

    The Infrared Surface Brightness Fluctuation Distances to the Hydra and Coma Clusters

    Get PDF
    We present IR surface brightness fluctuation (SBF) distance measurements to NGC 4889 in the Coma cluster and to NGC 3309 and NGC 3311 in the Hydra cluster. We explicitly corrected for the contributions to the fluctuations from globular clusters, background galaxies, and residual background variance. We measured a distance of 85 +/- 10 Mpc to NGC 4889 and a distance of 46 +/- 5 Mpc to the Hydra cluster. Adopting recession velocities of 7186 +/- 428 km/s for Coma and 4054 +/- 296 km/s for Hydra gives a mean Hubble constant of H_0 = 87 +/- 11 km/s/Mpc. Corrections for residual variances were a significant fraction of the SBF signal measured, and, if underestimated, would bias our measurement towards smaller distances and larger values of H_0. Both NICMOS on the Hubble Space Telescope and large-aperture ground-based telescopes with new IR detectors will make accurate SBF distance measurements possible to 100 Mpc and beyond.Comment: 24 pages, 4 PostScript figures, 2 JPEG images; accepted for publication in Ap

    Mass and Light in the Universe

    Get PDF
    We present a weak lensing and photometric study of six half by half degree fields observed at the CFHT using the UH8K CCD mosaic camera. The fields were observed for a total of 2 hours each in I and V, resulting in catalogs containing ~ 20 000 galaxies per passband per field. We use V-I color and I magnitude to select bright early type galaxies at redshifts 0.1 < z < 0.9. We measure the gravitational shear from faint galaxies in the range 21 < m_I < 25 from a composite catalog and find a strong correlation with that predicted from the early types if they trace the mass with mass-to-light ratio 300\pm75 h (in solar units) for a flat (Omega_m0 = 0.3, Omega_l0 = 0.7) lambda cosmology and 400\pm100 h for Einstein-de Sitter. We make two-dimensional reconstructions of the mass surface density. Cross-correlation of the measured mass surface density with that predicted from the early type galaxy distribution shows a strong peak at zero lag (significant at the 5.2-sigma level). We azimuthally average the cross- and auto-correlation functions. We conclude that the profiles are consistent with early type galaxies tracing mass on scales of > 45 arcsec (> 200 kpc at z = 0.5). We sub-divide our bright early type galaxies by redshift and obtain similar conclusions. These mass-to-light ratios imply \Omega_m0 = 0.10\pm0.02 (\Omega_m0 = 0.13\pm0.03 for Einstein-de Sitter) of closure density.Comment: 27 pages, 19 figs (4 ps, 15 gif), 4 tables, accepted for publication in Ap.J. (email Gillian for better resolution ps versions of gif greyscale plots

    Galaxy Halo Masses from Galaxy-Galaxy Lensing

    Get PDF
    We present measurements of the extended dark halo profiles of bright early type galaxies at redshifts 0.1 to 0.9 obtained via galaxy-galaxy lensing analysis of images taken at the CFHT using the UH8K CCD mosaic camera. Six half degree fields were observed for a total of 2 hours each in I and V, resulting in catalogs containing ~20 000 galaxies per field. We used V-I color and I magnitude to select bright early type galaxies as the lens galaxies, yielding a sample of massive lenses with fairly well determined redshifts and absolute magnitudes M ~ M_* \pm 1. We paired these with faint galaxies lying at angular distances 20" to 60", corresponding to physical radii of 26 to 77 kpc (z = 0.1) and 105 to 315 kpc (z = 0.9), and computed the mean tangential shear of the faint galaxies. The shear falls off with radius roughly as expected for flat rotation curve halos. The shear values were weighted in proportion to the square root of the luminosity of the lens galaxy. Our results give a value for the average mean rotation velocity of an L_* galaxy halo at r~50-200 kpc of v_* = 238^{+27}_{-30} km per sec for a flat lambda (Omega_m0 = 0.3, Omega_l0 = 0.7) cosmology (v_* = 269^{+34}_{-39} km per sec for Einstein-de Sitter), and with little evidence for evolution with redshift. We compare to halo masses measured by other groups/techniques. We find a mass-to-light ratio of ~121\pm28h(r/100 kpc) and these halos constitute Omega ~0.04 \pm 0.01(r/100 kpc) of closure density. (abridged)Comment: Accepted for publication in ApJ (minor modifications) - 32 pages, 11 figs, 5 table

    The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances

    Full text link
    We report data for II band Surface Brightness Fluctuation (SBF) magnitudes, V-I colors, and distance moduli for 300 galaxies. The Survey contains E, S0 and early-type spiral galaxies in the proportions of 49:42:9, and is essentially complete for E galaxies to Hubble velocities of 2000 km/s, with a substantial sampling of E galaxies out to 4000 km/s. The median error in distance modulus is 0.22 mag. We also present two new results from the Survey. (1) We compare the mean peculiar flow velocity (bulk flow) implied by our distances with predictions of typical cold dark matter transfer functions as a function of scale, and find very good agreement with cold, dark matter cosmologies if the transfer function scale parameter Γ\Gamma, and the power spectrum normalization σ8\sigma_8 are related by σ8Γ0.52±0.5\sigma_8 \Gamma^{-0.5} \approx 2\pm0.5. Derived directly from velocities, this result is independent of the distribution of galaxies or models for biasing. The modest bulk flow contradicts reports of large-scale, large-amplitude flows in the 200\sim200 Mpc diameter volume surrounding our Survey volume. (2) We present a distance-independent measure of absolute galaxy luminosity, \Nbar, and show how it correlates with galaxy properties such as color and velocity dispersion, demonstrating its utility for measuring galaxy distances through large and unknown extinction.Comment: Accepted for publication in ApJ (10 January 2001); 23 page

    Measuring Distances Using Infrared Surface Brightness Fluctuations

    Get PDF
    Surface brightness fluctuations (SBFs) are much brighter in the IR than they are at optical wavelengths, making it possible to measure greater distances using IR SBFs. We report new K' (2.1 micron) SBF measurements of 9 galaxies in the Fornax and Eridanus clusters using a 1024^2-pixel HgCdTe array. We used improved analysis techniques to remove contributions from globular clusters and background galaxies, and we assess the relative importance of other sources of residual variance. We applied the improved methodology to Fornax and Eridanus images and to previously published Virgo cluster data. Apparent fluctuation magnitudes were used in conjunction with Cepheid distances to M31 and the Virgo cluster to calibrate the K' SBF distance scale. We find the absolute fluctuation magnitude MK'= -5.61+/-0.12, with an intrinsic scatter to the calibration of 0.06 mag. No statistically significant change in MK' is detected as a function of (V-I). Our calibration is consistent with constant age and metallicity stellar population models. The lack of a correlation with (V-I) in the context of the stellar population models implies that elliptical galaxies bluer than (V-I)=1.2 have SBFs dominated by younger (5-8 Gyr) populations. K' SBFs prove to be a reliable distance indicator as long as the residual variance from globular clusters and background galaxies is properly removed. Also, it is important that a sufficiently high S/N ratio be achieved to allow reliable sky subtraction because residual spatial variance can bias the measurement of the SBF power spectrum. (abridged)Comment: Accepted for publication in ApJ, 44 pages, 10 Postscript figure

    Hubble Space Telescope Imaging of Lyman Alpha Emission at z=4.4

    Get PDF
    We present the highest redshift detections of resolved Lyman alpha emission, using Hubble Space Telescope/ACS F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS CDF-S. We detect Lyman alpha emission from three spectroscopically confirmed z = 4.4 Lyman alpha emitting galaxies (LAEs), more than doubling the sample of LAEs with resolved Lyman alpha emission. Comparing the light distribution between the rest-frame ultraviolet continuum and narrowband images, we investigate the escape of Lyman alpha photons at high redshift. While our data do not support a positional offset between the Lyman alpha and rest-frame ultraviolet (UV) continuum emission, the half-light radii in two out of the three galaxies are significantly larger in Lyman alpha than in the rest-frame UV continuum. This result is confirmed when comparing object sizes in a stack of all objects in both bands. Additionally, the narrowband flux detected with HST is significantly less than observed in similar filters from the ground. These results together imply that the Lyman alpha emission is not strictly confined to its indigenous star-forming regions. Rather, the Lyman alpha emission is more extended, with the missing HST flux likely existing in a diffuse outer halo. This suggests that the radiative transfer of Lyman alpha photons in high-redshift LAEs is complicated, with the interstellar-medium geometry and/or outflows playing a significant role in galaxies at these redshifts.Comment: Submitted to the Astrophysical Journal. 11 pages, 10 figure

    Design and use of a large-format CCD instrument for the identification and study of distant galaxy clusters

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 1989.GRSN 410724Includes bibliographical references.by Gerard Anthony Luppino.Ph.D
    corecore