9 research outputs found

    Spatial variation of perfusion MRI reflects cognitive decline in mild cognitive impairment and early dementia

    No full text
    Cerebral blood flow (CBF) measured with arterial spin labelling (ASL) magnetic resonance imaging (MRI) reflects cerebral perfusion, related to metabolism, and arterial transit time (ATT), related to vascular health. Our aim was to investigate the spatial coefficient of variation (sCoV) of CBF maps as a surrogate for ATT, in volunteers meeting criteria for subjective cognitive decline (SCD), amnestic mild cognitive impairment (MCI) and probable Alzheimer’s dementia (AD). Whole-brain pseudo continuous ASL MRI was performed at 3 T in 122 participants (controls = 20, SCD = 44, MCI = 45 and AD = 13) across three sites in New Zealand. From CBF maps that included all grey matter, sCoV progressively increased across each group with increased cognitive deficit. A similar overall trend was found when examining sCoV solely in the temporal lobe. We conclude that sCoV, a simple to compute imaging metric derived from ASL MRI, is sensitive to varying degrees of cognitive changes and supports the view that vascular health contributes to cognitive decline associated with Alzheimer’s disease

    Space QUEST mission proposal: experimentally testing decoherence due to gravity

    No full text
    Models of quantum systems on curved space-times lack sufficient experimental verification. Some speculative theories suggest that quantum correlations, such as entanglement, may exhibit different behavior to purely classical correlations in curved space. By measuring this effect or lack thereof, we can test the hypotheses behind several such models. For instance, as predicted by Ralph et al [5] and Ralph and Pienaar [1], a bipartite entangled system could decohere if each particle traversed through a different gravitational field gradient. We propose to study this effect in a ground to space uplink scenario. We extend the above theoretical predictions of Ralph and coworkers and discuss the scientific consequences of detecting/failing to detect the predicted gravitational decoherence. We present a detailed mission design of the European Space Agency's Space QUEST (Space—Quantum Entanglement Space Test) mission, and study the feasibility of the mission scheme.© 2018 The Author(s
    corecore