4 research outputs found

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Lek-associated movement of a putative Ebolavirus reservoir, the hammer-headed fruit bat (Hypsignathus monstrosus), in northern Republic of Congo.

    No full text
    The biology and ecology of Africa's largest fruit bat remains largely understudied and enigmatic despite at least two highly unusual attributes. The acoustic lek mating behavior of the hammer-headed bat (Hypsignathus monstrosus) in the Congo basin was first described in the 1970s. More recently molecular testing implicated this species and other African bats as potential reservoir hosts for Ebola virus and it was one of only two fruit bat species epidemiologically linked to the 2008 Luebo, Democratic Republic of Congo, Ebola outbreak. Here we share findings from the first pilot study of hammer-headed bat movement using GPS tracking and accelerometry units and a small preceding radio-tracking trial at an apparent lekking site. The radio-tracking revealed adult males had high rates of nightly visitation to the site compared to females (only one visit) and that two of six females day-roosted ~100 m west of Libonga, the nearest village that is ~1.6 km southwest. Four months later, in mid-April 2018, five individual bats, comprised of four males and one female, were tracked from two to 306 days, collecting from 67 to 1022 GPS locations. As measured by mean distance to the site and proportion of nightly GPS locations within 1 km of the site (percent visitation), the males were much more closely associated with the site (mean distance 1.4 km; 51% visitation), than the female (mean 5.5 km; 2.2% visitation). Despite the small sample size, our tracking evidence supports our original characterization of the site as a lek, and the lek itself is much more central to male than female movement. Moreover, our pilot demonstrates the technical feasibility of executing future studies on hammer-headed bats that will help fill problematic knowledge gaps about zoonotic spillover risks and the conservation needs of fruit bats across the continent

    Zaire ebolavirus surveillance near the Bikoro region of the Democratic Republic of the Congo during the 2018 outbreak reveals presence of seropositive bats.

    No full text
    On the 8th of May, 2018, an outbreak of Ebola virus disease (EVD) was declared, originating in the Bikoro region of the Democratic Republic of the Congo (DRC) near the border with neighboring Republic of the Congo (ROC). Frequent trade and migration occur between DRC and ROC-based communities residing along the Congo River. In June 2018, a field team was deployed to determine whether Zaire ebolavirus (Ebola virus (EBOV)) was contemporaneously circulating in local bats at the human-animal interface in ROC near the Bikoro EVD outbreak. Samples were collected from bats in the Cuvette and Likouala departments, ROC, bordering the Équateur Province in DRC where the Bikoro EVD outbreak was first detected. EBOV genomic material was not detected in bat-derived samples by targeted quantitative reverse transcription-polymerase chain reaction or by family-level consensus polymerase chain reaction; however, serological data suggests recent exposure to EBOV in bats in the region. We collected serum from 144 bats in the Cuvette department with 6.9% seropositivity against the EBOV glycoprotein and 14.3% seropositivity for serum collected from 27 fruit bats and one Molossinae in the Likouala department. We conclude that proactive investment in longitudinal sampling for filoviruses at the human-animal interface, coupled with ecological investigations are needed to identify EBOV wildlife reservoirs

    Coronavirus surveillance in wildlife from two Congo basin countries detects RNA of multiple species circulating in bats and rodents.

    No full text
    Coronaviruses play an important role as pathogens of humans and animals, and the emergence of epidemics like SARS, MERS and COVID-19 is closely linked to zoonotic transmission events primarily from wild animals. Bats have been found to be an important source of coronaviruses with some of them having the potential to infect humans, with other animals serving as intermediate or alternate hosts or reservoirs. Host diversity may be an important contributor to viral diversity and thus the potential for zoonotic events. To date, limited research has been done in Africa on this topic, in particular in the Congo Basin despite frequent contact between humans and wildlife in this region. We sampled and, using consensus coronavirus PCR-primers, tested 3,561 wild animals for coronavirus RNA. The focus was on bats (38%), rodents (38%), and primates (23%) that posed an elevated risk for contact with people, and we found coronavirus RNA in 121 animals, of which all but two were bats. Depending on the taxonomic family, bats were significantly more likely to be coronavirus RNA-positive when sampled either in the wet (Pteropodidae and Rhinolophidae) or dry season (Hipposideridae, Miniopteridae, Molossidae, and Vespertilionidae). The detected RNA sequences correspond to 15 alpha- and 6 betacoronaviruses, with some of them being very similar (>95% nucleotide identities) to known coronaviruses and others being more unique and potentially representing novel viruses. In seven of the bats, we detected RNA most closely related to sequences of the human common cold coronaviruses 229E or NL63 (>80% nucleotide identities). The findings highlight the potential for coronavirus spillover, especially in regions with a high diversity of bats and close human contact, and reinforces the need for ongoing surveillance
    corecore