81 research outputs found

    Stem Cell Course in the Middle East: Science Diplomacy and International Collaborations During the Arab Spring

    Get PDF
    In April 2011, an international advanced course and workshop entitled “Frontiers in Human Pluripotent Stem Cells” and an International Congress on Fertility and Genetics (http://www.fertigen.com.jo/ConferenceDetails.aspx) was held in Amman Jordan hosted by the Jordanian Society of Fertility and Genetics under the auspices of the International Cell Research Organization (ICRO), a UNESCO associated NGO. The Congress President Dr. Zaid Kilani, with Dr. Abdel Latif Abu Khadra, President of the Jordanian society for Fertility and Genetics, Dr. Rana Dajani of the Hashemite University of Jordan, and their Organizing Committee proved to be an excellent organizers and dedicated physician-scientists and, focusing on fertility, genetics and stem cells in a wide range of advanced therapeutic applications. Brilliant course participants included trainees, scientists and clinicians from the Greater Middle East. The lectures and practical sessions, presented by internationally acknowledged scientists, included overviews of recent achievements in pluripotent stem cell research, emphasizing the role of both the embryonic (ES) and induced pluripotent stem (iPS) cells. A major emphasis was placed on the clinical achievements in germ cell and umbilical cord stem cell transplantation issues, and on the potential of fast and successful prenatal and pre-implantation molecular genetics diagnostics. The organization of the stem cell course in the Holy Land especially emphasized that issues of “eternal life” and “rejuvenation” are already at hand—at least in the pluripotent stem cell research field. In the lively atmosphere of the course about 60 participants had heated discussions on the possibility and ethics of advanced prenatal diagnostics, and on regulatory issues reflecting the need of separation of clinically effective versus unapproved, unwarranted stem cell treatments. An open discussion of many ethical issues, reflecting profound differences in religion and medical tradition in the different countries, made this course exceptionally interesting for both teachers and trainees

    Acrosome components after intracytoplasmic sperm injection: the decondensation frontier

    Get PDF
    http://www.sciencedirect.com/science/article/B6T6K-43CBFGC-14/1/c122d3f8e7188ef9ec4a133a8068995

    Timing the early events during sea urchin fertilization

    Get PDF
    To determine precisely the timing, duration, and sequences of the earliest events during sea urchin (Lytechinus variegatus) fertilization, the bioelectric recordings of microelectrode-impaled eggs were electronically superimposed, by video mixing, over the microscopic differential interference contrast image of the same egg at insemination. Videotape analysis, utilizing a slow-motion analyzer, demonstrates that the successful sperm triggers the bioelectric membrane potential reversal within 3.36 ± 3.02 sec (0.72-9.76 sec range; Σ = 23 eggs) of sperm-egg attachment. This sperm, actively gyrating about its attachment site, is indistinguishable from the other, unsuccessful sperm until 12.66 ± 2.72 sec (6.72-16.60 sec range; Σ = 15) later when the sperm tail ceases its beating and sperm incorporation ensues. The cortical granules begin to discharge, and the fertilization coat starts to elevate at the fusion site at 20.79 ± 3.18 sec (13.62-26.08 sec range; Σ = 12) after the onset of the fertilization potential, i.e., an average of about 8 sec after the cessation of sperm-tail motility during incorporation. In most cases, the bioelectric responses starts within 7 sec of sperm adhesions; if the data are analyzed excluding the few slow cases, the fertilization potential is found to start 1.93 sec (±1.28 sec) after sperm attachment. These results indicate that the first successful sperm triggers the fast block to polyspermy within 3.4 sec, perhaps as quickly as 1.9 sec, of sperm-egg adhesion, about 13 sec before the first morphological indication of fertilization, and about 21 sec before the characteristic elevation of the fertilization coat responsible for the late block to polyspermy

    Bioelectric responses at fertilization : separation of the events associated with insemination from those due to the cortical reaction in sea urchin, Lytechinus variegatus

    Get PDF
    The bioelectric responses at fertilization of the sea urchin Lytechinus variegatus are a complex series of membrane potential and resistance changes that occur concomitant with gamete fusion, ionic fluxes, and the cortical granule discharge. This work attempts to separate the electrical effects of sperm-egg interactions from those of the cortical reactions. Two approaches were taken to discern the electrical events associated with insemination, distinct from cortical granule discharge: (1) fertilization of eggs treated with 3% urethane, 10 mM procaine, or 10 mM nicotine, to prevent the cortical reaction and (2) refertilization of fertilized eggs (denuded with 1 mM aminotriazole containing 1 mg/ml soybean trypsin inhibitor). Cortical granule discharge in the absence of sperm incorporation was investigated by artificial activation with 5 μM A23187 or by fertilization in the presence of 10 μM cytochalasin D, which prevents incorporation. These results are consistent with a model in which the sperm-egg interaction triggers both a rapid (50-400 msec), but minor (≅10 mV), electrical transient that leads to an action potential and then both the Na+-dependent fast block to polyspermy and the late block resulting from the secretion of the cortical granules

    The Kinesin-Related Protein, Hset, Opposes the Activity of Eg5 and Cross-Links Microtubules in the Mammalian Mitotic Spindle

    Get PDF
    We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes

    Mapping Primary Gyrogenesis During Fetal Development in Primate Brains: High-Resolution in Utero Structural MRI of Fetal Brain Development in Pregnant Baboons

    Get PDF
    The global and regional changes in the fetal cerebral cortex in primates were mapped during primary gyrification (PG; weeks 17–25 of 26 weeks total gestation). Studying pregnant baboons using high-resolution MRI in utero, measurements included cerebral volume, cortical surface area, gyrification index and length and depth of 10 primary cortical sulci. Seven normally developing fetuses were imaged in two animals longitudinally and sequentially. We compared these results to those on PG that from the ferret studies and analyzed them in the context of our recent studies of phylogenetics of cerebral gyrification. We observed that in both primates and non-primates, the cerebrum undergoes a very rapid transformation into the gyrencephalic state, subsequently accompanied by an accelerated growth in brain volume and cortical surface area. However, PG trends in baboons exhibited some critical differences from those observed in ferrets. For example, in baboons, the growth along the long (length) axis of cortical sulci was unrelated to the growth along the short (depth) axis and far outpaced it. Additionally, the correlation between the rate of growth along the short sulcal axis and heritability of sulcal depth was negative and approached significance (r = −0.60; p < 0.10), while the same trend for long axis was positive and not significant (p = 0.3; p = 0.40). These findings, in an animal that shares a highly orchestrated pattern of PG with humans, suggest that ontogenic processes that influence changes in sulcal length and depth are diverse and possibly driven by different factors in primates than in non-primates

    Scanning Electron Microscopy of High-Pressure-Frozen Sea Urchin Embryos

    Get PDF
    High-pressure-freezing permits direct cryo-fixation of sea urchin embryos having a defined developmental state without the formation of large ice crystals. We have investigated preparation protocols for observing high-pressure-frozen and freeze-fractured samples in the scanning electron microscope. High-pressure-freezing was superior to other freezing protocols, because the whole bulk sample was reasonably well frozen and the overall three-dimensional shape of the embryos was well preserved. The samples were either dehydrated by freeze-substitution and critical-point-drying, or imaged in the partially hydrated state, using a cold stage in the SEM. During freeze-substitution the samples were stabilized by fixatives. The disadvantage of this method was that shrinking and extraction effects, caused by the removal of the water, could not be avoided. These disadvantages were avoided when. the sample was imaged in the frozen-hydrated state using a cold-stage in the SEM. This would be the method of choice for morphometric studies. Frozen-hydrated samples, however, were very beam sensitive and many structures remained covered by the ice and were not visible. Frozen-hydrated samples were partially freeze-dried to make visible additional structures that had been covered by ice. However, this method also caused drying artifacts when too much water was removed

    Cellular promiscuity: explaining cellular fidelity in vivo

    Full text link

    Corrigendum to “Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates: overcoming defects caused by meiotic spindle extraction” [Dev. Biol. 276 (2004) 237–252]

    Get PDF
    AbstractTherapeutic cloning or nuclear transfer for stem cells (NTSC) seeks to overcome immune rejection through the development of embryonic stem cells (ES cells) derived from cloned blastocysts. The successful derivation of a human embryonic stem cell (hESC) line from blastocysts generated by somatic cell nuclear transfer (SCNT) provides proof-of-principle for “therapeutic cloning,” though immune matching of the differentiated NT-hES remains to be established. Here, in nonhuman primates (NHPs; rhesus and cynomologus macaques), the strategies used with human SCNT improve NHP-SCNT development significantly. Protocol improvements include the following: enucleation just prior to metaphase-II arrest; extrusion rather than extraction of the meiotic spindle-chromosome complex (SCC); nuclear transfer by electrofusion with simultaneous cytoplast activation; and sequential media. Embryo transfers (ET) of 135 SCNT-NHP into 25 staged surrogates did not result in convincing evidence of pregnancies after 30 days post-ET. These results demonstrate that (i) protocols optimized in humans generate preimplantation embryos in nonhuman primates; (ii) some, though perhaps not yet all, hurdles in deriving NT-nhpES cells from cloned macaque embryos (therapeutic cloning) have been overcome; (iii) reproductive cloning with SCNT-NHP embryos appears significantly less efficient than with fertilized embryos; (iv) therapeutic cloning with matured metaphase-II oocytes, aged oocytes, or “fertilization failures” might remain difficult since enucleation is optimally performed prior to metaphase-II arrest; and (v) challenges remain for producing reproductive successes since NT embryos appear inferior to fertilized ones due to spindle defects resulting from centrosome and motor deficiencies that produce aneuploid preimplantation embryos, among other anomalies including genomic imprinting, mitochondrial and cytoplasmic heterogeneities, cell cycle asynchronies, and improper nuclear reprogramming
    corecore