17 research outputs found

    Role of AF6 protein in cell-to-cell spread of Herpes simplex virus 1

    Get PDF
    AbstractAF6 and its rat homologue afadin are multidomain proteins localized at cell junctions and involved in intercellular adhesion. AF6 interacts via its PDZ domain with nectin-1 at epithelial adherens junctions. Nectin-1 serves as a mediator of cell-to-cell spread for Herpes simplex virus 1 (HSV-1). We analyzed the role of AF6 protein in the viral spread and nectin-1 clustering at cell–cell contacts by knockdown of AF6 in epithelial cells. AF6 knockdown reduced efficiency of HSV-1 spreading, however, the clustering of nectin-1 at cell–cell contacts was not affected. Thus, AF6 protein is important for spreading of HSV-1 in epithelial cells, independently of nectin clustering, possibly by stabilization of the E-cadherin-dependent cell adhesion

    MEK1 mediates a positive feedback on Raf-1 activity independently of Ras and Src

    No full text
    Growth factor stimulated receptor tyrosine kinases activate a protein kinase cascade via the serine/threonine protein kinase Raf-1. Direct upstream activators of Raf-1 are Ras and Src. This study shows that MEK1, the direct downstream effector of Raf-1, can also stimulate Raf-1 kinase activity by a positive feedback loop. Activated MEK1 mediates hyperphosphorylation of the amino terminal regulatory as well as of the carboxy terminal catalytic domain of Raf-1. The hyperphosphorylation of Raf-1 correlates with a change in the tryptic phosphopeptide pattern only at the carboxy terminus of Raf-1 and an increase in Raf-1 kinase activity. MEK1-mediated Raf-1 activation is inhibited by co-expression of the MAPK specific phosphatase MKP-1 indicating that the MEK1 effect is exerted through a MAPK dependent pathway. Stimulation of Raf-1 activity by MEK1 is independent of Ras, Src and tyrosine phosphorylation of Raf-1. MEK1 can however synergize with Ras and leads to further increase of the Raf-1 kinase activity. Thus, MEK1 can mediate activation of Raf-1 by a novel positive feedback mechanism which allows fast signal amplification and could prolong activation of Raf-1

    Optogenetic Control of Protein Kinase Activity in Mammalian Cells

    No full text
    Light-dependent dimerization is the basis for recently developed noninvasive optogenetic tools. Here we present a novel tool combining optogenetics with the control of protein kinase activity to investigate signal transduction pathways. Mediated by <i>Arabidopsis thaliana</i> photoreceptor cryptochrome 2, we activated the protein kinase C-RAF by blue light-dependent dimerization, allowing for decoupling from upstream signaling events induced by surface receptors. The activation by light is fast, reversible, and not only time but also dose dependent as monitored by phosphorylation of ERK1/2. Additionally, light-activated C-RAF controls serum response factor-mediated gene expression. Light-induced heterodimerization of C-RAF with a kinase-dead mutant of B-RAF demonstrates the enhancing role of B-RAF as a scaffold for C-RAF activity, which leads to the paradoxical activation of C-RAF found in human cancers. This optogenetic tool enables reversible control of protein kinase activity in signal duration and strength. These properties can help to shed light onto downstream signaling processes of protein kinases in living cells
    corecore