42 research outputs found

    Using Pre-existing Microarray Datasets to Increase Experimental Power: Application to Insulin Resistance

    Get PDF
    Although they have become a widely used experimental technique for identifying differentially expressed (DE) genes, DNA microarrays are notorious for generating noisy data. A common strategy for mitigating the effects of noise is to perform many experimental replicates. This approach is often costly and sometimes impossible given limited resources; thus, analytical methods are needed which increase accuracy at no additional cost. One inexpensive source of microarray replicates comes from prior work: to date, data from hundreds of thousands of microarray experiments are in the public domain. Although these data assay a wide range of conditions, they cannot be used directly to inform any particular experiment and are thus ignored by most DE gene methods. We present the SVD Augmented Gene expression Analysis Tool (SAGAT), a mathematically principled, data-driven approach for identifying DE genes. SAGAT increases the power of a microarray experiment by using observed coexpression relationships from publicly available microarray datasets to reduce uncertainty in individual genes' expression measurements. We tested the method on three well-replicated human microarray datasets and demonstrate that use of SAGAT increased effective sample sizes by as many as 2.72 arrays. We applied SAGAT to unpublished data from a microarray study investigating transcriptional responses to insulin resistance, resulting in a 50% increase in the number of significant genes detected. We evaluated 11 (58%) of these genes experimentally using qPCR, confirming the directions of expression change for all 11 and statistical significance for three. Use of SAGAT revealed coherent biological changes in three pathways: inflammation, differentiation, and fatty acid synthesis, furthering our molecular understanding of a type 2 diabetes risk factor. We envision SAGAT as a means to maximize the potential for biological discovery from subtle transcriptional responses, and we provide it as a freely available software package that is immediately applicable to any human microarray study

    Estimation and Mapping of Wet and Dry Mercury Deposition Across Northeastern North America

    Full text link
    Whereas many ecosystem characteristics and processes influence mercury accumulation in higher trophic-level organisms, the mercury flux from the atmosphere to a lake and its watershed is a likely factor in potential risk to biota. Atmospheric deposition clearly affects mercury accumulation in soils and lake sediments. Thus, knowledge of spatial patterns in atmospheric deposition may provide information for assessing the relative risk for ecosystems to exhibit excessive biotic mercury contamination. Atmospheric mercury concentrations in aerosol, vapor, and liquid phases from four observation networks were used to estimate regional surface concentration fields. Statistical models were developed to relate sparsely measured mercury vapor and aerosol concentrations to the more commonly measured mercury concentration in precipitation. High spatial resolution deposition velocities for different phases (precipitation, cloud droplets, aerosols, and reactive gaseous mercury (RGM)) were computed using inferential models. An empirical model was developed to estimate gaseous elemental mercury (GEM) deposition. Spatial patterns of estimated total mercury deposition were complex. Generally, deposition was higher in the southwest and lower in the northeast. Elevation, land cover, and proximity to urban areas modified the general pattern. The estimated net GEM and RGM fluxes were each greater than or equal to wet deposition in many areas. Mercury assimilation by plant foliage may provide a substantial input of methyl-mercury (MeHg) to ecosystems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44443/1/10646_2004_Article_6259.pd

    ÂżDesarrollo econĂłmico sin inflaciĂłn?

    No full text

    Latin America's postwar inflation and balance of payments problems

    No full text
    Inflation (Finance) - Latin America ; Balance of payments - Latin America

    The Reverse Transcriptase Sequence of Human Immunodeficiency Virus Type 1 is Under Positive Evolutionary Selection in the Brain

    No full text
    The human immunodeficiency virus type 1 (HIV-1) enters the central nervous system (CNS) during the acute phase of infection and causes AIDS-related encephalitis and dementia in 30% of individuals. Previous studies show that HIV-1 sequences derived from the CNS of infected patients, including the sequence encoding reverse transcriptase (RT), are genetically distinct from sequences in other tissues. The hypothesis of the current study is that the RT sequence of HIV-1 is under positive selection within the CNS. Multiple alignments of non-CNS-derived and CNS-derived HIV-1 RT sequences were constructed using the ClustalW 1.8 program. The multiple alignments were analyzed with the Synonymous/Nonsynonymous Analysis Program. Codon positions 122-125, 135-149, and 166-212 of the CNS-derived RT sequences underwent a greater accumulation of nonsynonymous than synonymous substitutions, which was markedly different from the analysis results of the non-CNS-derived RT sequences. These residues are located in the finger and palm subdomains of the RT protein structure, which encodes the polymerase active site. The analysis of CNS-derived partial-length RT sequences that encompass these regions yielded similar results. A comparison of CNS-derived RT sequences to a non-CNS-derived RT consensus sequence revealed that a majority of the nonsynonymous substitutions resulted in a specific amino acid replacement. These results indicate that reverse transcriptase is under positive selection within the CNS. The amino acid replacements were visualized on a three-dimensional structure of HIV-1 RT using the Sybyl software suite. The protein structure analysis revealed that the amino acid replacements observed among the CNS-derived sequences occurred in areas of known structural and functional significance

    The Reverse Transcriptase Sequence of Human Immunodeficiency Virus Type 1 is Under Positive Evolutionary Selection in the Brain

    No full text
    The human immunodeficiency virus type 1 (HIV-1) enters the central nervous system (CNS) during the acute phase of infection and causes AIDS-related encephalitis and dementia in 30% of individuals. Previous studies show that HIV-1 sequences derived from the CNS of infected patients, including the sequence encoding reverse transcriptase (RT), are genetically distinct from sequences in other tissues. The hypothesis of the current study is that the RT sequence of HIV-1 is under positive selection within the CNS. Multiple alignments of non-CNS-derived and CNS-derived HIV-1 RT sequences were constructed using the ClustalW 1.8 program. The multiple alignments were analyzed with the Synonymous/Nonsynonymous Analysis Program. Codon positions 122-125, 135-149, and 166-212 of the CNS-derived RT sequences underwent a greater accumulation of nonsynonymous than synonymous substitutions, which was markedly different from the analysis results of the non-CNS-derived RT sequences. These residues are located in the finger and palm subdomains of the RT protein structure, which encodes the polymerase active site. The analysis of CNS-derived partial-length RT sequences that encompass these regions yielded similar results. A comparison of CNS-derived RT sequences to a non-CNS-derived RT consensus sequence revealed that a majority of the nonsynonymous substitutions resulted in a specific amino acid replacement. These results indicate that reverse transcriptase is under positive selection within the CNS. The amino acid replacements were visualized on a three-dimensional structure of HIV-1 RT using the Sybyl software suite. The protein structure analysis revealed that the amino acid replacements observed among the CNS-derived sequences occurred in areas of known structural and functional significance

    Depletion of Plasma Membrane–Associated Phosphoinositides Mimics Inhibition of TRPM7 Channels by Cytosolic Mg2+, Spermine, and pH

    No full text
    Transient receptor potential cation channel subfamily M member 7 (TRPM7) is an ion channel/protein kinase belonging to the TRP melastatin and eEF2 kinase families. Under physiological conditions, most native TRPM7 channels are inhibited by cytoplasmic Mg2+, protons, and polyamines. Currents through these channels (ITRPM7) are robustly potentiated when the cell interior is exchanged with low Mg2+-containing buffers. ITRPM7 is also potentiated by phosphatidyl inositol bisphosphate (PI(4,5)P2) and suppressed by its hydrolysis. Here we characterized internal Mg2+- and pH-mediated inhibition of TRPM7 channels in HEK293 cells overexpressing WT voltage-sensing phospholipid phosphatase (VSP) or its catalytically inactive variant VSP-C363S. VSP-mediated depletion of membrane phosphoinositides significantly increased channel sensitivity to Mg2+ and pH. Proton concentrations that were too low to inhibit ITRPM7 when the VSP-C363S variant was expressed (pH 8.2) became inhibitory in WT VSP–expressing cells. At pH 6.5, protons inhibited ITRPM7 both in WT and VSP C363S–expressing cells but with a faster time course in the WT VSP–expressing cells. Inhibition by 150 μM Mg2+ was also significantly faster in the WT VSP–expressing cells. Cellular PI(4,5)P2 depletion increased the sensitivity of TRPM7 channels to the inhibitor 2-aminoethyl diphenyl borinate, which acidifies the cytosol. Single substitutions at Ser-1107 of TRPM7, reducing its sensitivity to Mg2+, also decreased its inhibition by spermine and acidic pH. Furthermore, these channel variants were markedly less sensitive to VSP-mediated PI(4,5)P2 depletion than the WT. We conclude that the internal Mg2+-, polyamine-, and pH-mediated inhibition of TRPM7 channels is not direct but, rather, reflects electrostatic screening and resultant disruption of PI(4,5)P2–channel interactions

    Depletion of Plasma Membrane–Associated Phosphoinositides Mimics Inhibition of TRPM7 Channels by Cytosolic Mg2+, Spermine, and pH

    No full text
    Transient receptor potential cation channel subfamily M member 7 (TRPM7) is an ion channel/protein kinase belonging to the TRP melastatin and eEF2 kinase families. Under physiological conditions, most native TRPM7 channels are inhibited by cytoplasmic Mg2+, protons, and polyamines. Currents through these channels (ITRPM7) are robustly potentiated when the cell interior is exchanged with low Mg2+-containing buffers. ITRPM7 is also potentiated by phosphatidyl inositol bisphosphate (PI(4,5)P2) and suppressed by its hydrolysis. Here we characterized internal Mg2+- and pH-mediated inhibition of TRPM7 channels in HEK293 cells overexpressing WT voltage-sensing phospholipid phosphatase (VSP) or its catalytically inactive variant VSP-C363S. VSP-mediated depletion of membrane phosphoinositides significantly increased channel sensitivity to Mg2+ and pH. Proton concentrations that were too low to inhibit ITRPM7 when the VSP-C363S variant was expressed (pH 8.2) became inhibitory in WT VSP–expressing cells. At pH 6.5, protons inhibited ITRPM7 both in WT and VSP C363S–expressing cells but with a faster time course in the WT VSP–expressing cells. Inhibition by 150 μM Mg2+ was also significantly faster in the WT VSP–expressing cells. Cellular PI(4,5)P2 depletion increased the sensitivity of TRPM7 channels to the inhibitor 2-aminoethyl diphenyl borinate, which acidifies the cytosol. Single substitutions at Ser-1107 of TRPM7, reducing its sensitivity to Mg2+, also decreased its inhibition by spermine and acidic pH. Furthermore, these channel variants were markedly less sensitive to VSP-mediated PI(4,5)P2 depletion than the WT. We conclude that the internal Mg2+-, polyamine-, and pH-mediated inhibition of TRPM7 channels is not direct but, rather, reflects electrostatic screening and resultant disruption of PI(4,5)P2–channel interactions
    corecore