38 research outputs found

    Digging into 'the rabbit-hole' of the extracellular matrix

    Get PDF

    Multiplex Profiling of Cellular Invasion in 3D Cell Culture Models.

    Get PDF
    To-date, most invasion or migration assays use a modified Boyden chamber-like design to assess migration as single-cell or scratch assays on coated or uncoated planar plastic surfaces. Here, we describe a 96-well microplate-based, high-content, three-dimensional cell culture assay capable of assessing invasion dynamics and molecular signatures thereof. On applying our invasion assay, we were able to demonstrate significant effects on the invasion capacity of fibroblast cell lines, as well as primary lung fibroblasts. Administration of epidermal growth factor resulted in a substantial increase of cellular invasion, thus making this technique suitable for high-throughput pharmacological screening of novel compounds regulating invasive and migratory pathways of primary cells. Our assay also correlates cellular invasiveness to molecular events. Thus, we argue of having developed a powerful and versatile toolbox for an extensive profiling of invasive cells in a 96-well format. This will have a major impact on research in disease areas like fibrosis, metastatic cancers, or chronic inflammatory states

    Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration

    Get PDF
    Plectin is a major intermediate filament (IF)ā€“based cytolinker protein that stabilizes cells and tissues mechanically, regulates actin filament dynamics, and serves as a scaffolding platform for signaling molecules. In this study, we show that plectin deficiency is a cause of aberrant keratin cytoskeleton organization caused by a lack of orthogonal IF cross-linking. Keratin networks in plectin-deficient cells were more susceptible to osmotic shockā€“induced retraction from peripheral areas, and their okadaic acidā€“induced disruption (paralleled by stress-activated MAP kinase p38 activation) proceeded faster. Basal activities of the MAP kinase Erk1/2 and of the membrane-associated upstream protein kinases c-Src and PKCĪ“ were significantly elevated, and increased migration rates, as assessed by in vitro wound-closure assays and time-lapse microscopy, were observed. Forced expression of RACK1, which is the plectin-binding receptor protein for activated PKCĪ“, in wild-type keratinocytes elevated their migration potential close to that of plectin-null cells. These data establish a link between cytolinker-controlled cytoarchitecture/scaffolding functions of keratin IFs and specific MAP kinase cascades mediating distinct cellular responses

    The role of calponin in the gene profile of metastatic cells: inhibition of metastatic cell motility by multiple calponin repeats

    Get PDF
    AbstractMetastasis of diseased cells is the basic event leading to death in individuals with cancer. Establishment of metastasis requires that tumour cells migrate from the site of the primary tumour into the circulation system, escape from the vasculature and form secondary tumours at novel sites. These processes depend to a large degree on cytoskeletal remodeling. We show here that multiple copies of the short actin-binding module CLIK23 from human or Caenorhabditis elegans calponin proteins effectively inhibit cell motility on two dimensional matrices and suppress soft agar colony formation of metastatic melanoma and adenocarcinoma cells of murine and human origin. Ectopic expression of CLIK23 modules for 30 days results in the formation of multinucleated cells. The repeat displays true modular behaviour, resulting in increased cytoskeletal effects in direct correlation with the increase in number of modules. Our results demonstrate that the role of calponin in the signature profile of metastasising cells is that of a mechanical stabiliser of the actin cytoskeleton, which interferes with actin turnover by binding at a unique interface along the actin filament

    Calponin Repeats Regulate Actin Filament Stability and Formation of Podosomes in Smooth Muscle Cells

    No full text
    Phorbol ester induces actin cytoskeleton rearrangements in cultured vascular smooth muscle cells. Calponin and SM22 Ī± are major components of differentiated smooth muscle and potential regulators of actin cytoskeleton interactions. Here we show that actin fibers decorated with h1 CaP remain stable, whereas SM22 Ī±-decorated actin bundles undergo rapid reorganization into podosomes within 30 min of PDBu exposure. Ectopic expression of GFP Ī±-actinin had no effect on the stability of the actin cytoskeleton and Ī±-actinin was transported rapidly into PDBu-induced podosomes. Our results demonstrate the involvement of CaP and SM22 Ī± in coordinating the balance between stabilization and dynamics of the actin cytoskeleton in mammalian smooth muscle. We provide evidence for the existence of two functionally distinct actin filament populations and introduce a molecular mechanism for the stabilization of the actin cytoskeleton by the unique actin-binding interface formed by calponin family-specific CLIK(23) repeats

    Generation of Human 3D Lung Tissue Cultures (3D-LTCs) for Disease Modeling

    No full text
    Translation of novel discoveries to human disease is limited by the availability of human tissue-based models of disease. Precision-cut lung slices (PCLS) used as 3D lung tissue cultures (3D-LTCs) represent an elegant and biologically highly relevant 3D cell culture model, which highly resemble in situ tissue due to their complexity, biomechanics and molecular composition. Tissue slicing is widely applied in various animal models. 3D-LTCs derived from human PCLS can be used to analyze responses to novel drugs, which might further help to better understand the mechanisms and functional effects of drugs in human tissue. The preparation of PCLS from surgically resected lung tissue samples of patients, who experienced lung lobectomy, increases the accessibility of diseased and peritumoral tissue. Here, we describe a detailed protocol for the generation of human PCLS from surgically resected soft-elastic patient lung tissue. Agarose was introduced into the bronchoalveolar space of the resectates, thus preserving lung structure and increasing the tissue's stiffness, which is crucial for subsequent slicing. 500 Āµm thick slices were prepared from the tissue block with a vibratome. Biopsy punches taken from PCLS ensure comparable tissue sample sizes and further increase the amount of tissue samples. The generated lung tissue cultures can be applied in a variety of studies in human lung biology, including the pathophysiology and mechanisms of different diseases, such as fibrotic processes at its best at (sub-)cellular levels. The highest benefit of the 3D-LTC ex vivo model is its close representation of the in situ human lung in respect of 3D tissue architecture, cell type diversity and lung anatomy as well as the potential for assessment of tissue from individual patients, which is relevant to further develop novel strategies for precision medicine
    corecore