3 research outputs found

    The antimalarial drug mefloquine enhances TP53 premature termination codon readthrough by aminoglycoside G418.

    No full text
    Nonsense mutations constitute ~10% of TP53 mutations in cancer. They introduce a premature termination codon that gives rise to truncated p53 protein with impaired function. The aminoglycoside G418 can induce TP53 premature termination codon readthrough and thus increase cellular levels of full-length protein. Small molecule phthalimide derivatives that can enhance the readthrough activity of G418 have also been described. To determine whether readthrough enhancers exist among drugs that are already approved for use in humans, we tested seven antimalarial drugs for readthrough of the common R213X TP53 nonsense mutation in HDQ-P1 breast cancer cells. Mefloquine induced no TP53 readthrough activity as a single agent but it strongly potentiated readthrough by G418. The two enantiomers composing pharmaceutical mefloquine potentiated readthrough to similar levels in HDQ-P1 cells and also in SW900, NCI-H1688 and HCC1937 cancer cells with different TP53 nonsense mutations. Exposure to G418 and mefloquine increased p53 phosphorylation at Ser15 and P21 transcript levels following DNA damage, indicating p53 produced via readthrough was functional. Mefloquine does not appear to enhance readthrough via lysosomotropic effects as it did not significantly affect lysosomal pH, the cellular levels of G418 or its distribution in organellar or cytosolic fractions. The availability of a readthrough enhancer that is already approved for use in humans should facilitate study of the therapeutic potential of TP53 readthrough in preclinical cancer models

    Both Chemical and Non-Chemical Steps Limit the Catalytic Efficiency of Family 4 Glycoside Hydrolases

    No full text
    The glycoside hydrolase family 4 (GH4) α-galactosidase from <i>Citrobacter freundii</i> (MelA) catalyzes the hydrolysis of fluoro-substituted phenyl α-d-galactopyranosides by utilizing two cofactors, NAD<sup>+</sup> and a metal cation, under reducing conditions. In order to refine the mechanistic understanding of this GH4 enzyme, leaving group effects were measured with various metal cations. The derived β<sub>lg</sub> value on <i>V</i>/<i>K</i> for strontium activation is indistinguishable from zero (0.05 ± 0.12). Deuterium kinetic isotope effects (KIEs) were measured for the activated substrates 2-fluorophenyl and 4-fluorophenyl α-d-galactopyranosides in the presence of Sr<sup>2+</sup>, Y<sup>3+</sup>, and Mn<sup>2+</sup>, where the isotopic substitution was on the carbohydrate at C-2 and/or C-3. To determine the contributing factors to the virtual transition state (TS) on which the KIEs report, kinetic isotope effects on isotope effects were measured on these KIEs using doubly deuterated substrates. The measured <sup>D</sup><i>V</i>/<i>K</i> KIEs for MelA-catalyzed hydrolysis of 2-fluorophenyl α-d-galactopyranoside are closer to unity than the measured effects on 4-fluorophenyl α-d-galactopyranoside, irrespective of the site of isotopic substitution and of the metal cation activator. These observations are consistent with hydride transfer at C-3 to the on-board NAD<sup>+</sup>, deprotonation at C-2, and a non-chemical step contributing to the virtual TS for <i>V</i>/<i>K</i>
    corecore