11 research outputs found

    Pivotal role of membrane substrate transporters on the metabolic alterations in the pressure-overloaded heart

    No full text
    Cardiac pressure overload (PO), such as caused by aortic stenosis and systemic hypertension, commonly results in cardiac hypertrophy and may lead to the development of heart failure. PO-induced heart failure is among the leading causes of death worldwide, but its pathological origin remains poorly understood. Metabolic alterations are proposed to be an important contributor to PO-induced cardiac hypertrophy and failure. While the healthy adult heart mainly uses long-chain fatty acids (FAs) and glucose as substrates for energy metabolism and to a lesser extent alternative substrates, i.e. lactate, ketone bodies, and amino acids (AAs), the pressure-overloaded heart is characterized by a shift in energy metabolism towards a greater reliance on glycolysis and alternative substrates. A key-governing kinetic step of both FA and glucose fluxes is at the level of their substrate-specific membrane transporters. The relative presence of these transporters in the sarcolemma determines the cardiac substrate preference. Whether the cardiac utilization of alternative substrates is also governed by membrane transporters is not yet known. In this review, we discuss current insight into the role of membrane substrate transporters in the metabolic alterations occurring in the pressure-overloaded heart. Given the increasing evidence of a role for alternative substrates in these metabolic alterations, there is an urgent need to disclose the key-governing kinetic steps in their utilization as well. Taken together, membrane substrate transporters emerge as novel targets for metabolic interventions to prevent or treat PO-induced heart failure

    Metabolic Interventions to Prevent Hypertrophy-Induced Alterations in Contractile Properties In Vitro

    No full text
    (1) Background: The exact mechanism(s) underlying pathological changes in a heart in transition to hypertrophy and failure are not yet fully understood. However, alterations in cardiac energy metabolism seem to be an important contributor. We characterized an in vitro model of adrenergic stimulation-induced cardiac hypertrophy for studying metabolic, structural, and functional changes over time. Accordingly, we investigated whether metabolic interventions prevent cardiac structural and functional changes; (2) Methods: Primary rat cardiomyocytes were treated with phenylephrine (PE) for 16 h, 24 h, or 48 h, whereafter hypertrophic marker expression, protein synthesis rate, glucose uptake, and contractile function were assessed; (3) Results: 24 h PE treatment increased expression of hypertrophic markers, phosphorylation of hypertrophy-related signaling kinases, protein synthesis, and glucose uptake. Importantly, the increased glucose uptake preceded structural and functional changes, suggesting a causal role for metabolism in the onset of PE-induced hypertrophy. Indeed, PE treatment in the presence of a PAN-Akt inhibitor or of a GLUT4 inhibitor dipyridamole prevented PE-induced increases in cellular glucose uptake and ameliorated PE-induced contractile alterations; (4) Conclusions: Pharmacological interventions, forcing substrate metabolism away from glucose utilization, improved contractile properties in PE-treated cardiomyocytes, suggesting that targeting glucose uptake, independent from protein synthesis, forms a promising strategy to prevent hypertrophy and hypertrophy-induced cardiac dysfunction

    Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations

    Get PDF
    Aims Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Methods and results Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, P-31 magnetic resonance spectroscopy (MRS), H-1 MRS, and F-18-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. Conclusion The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function

    Representative Western blot images of APN multimers in pericardial fluid (left) and venous plasma (right) of cardiac and vascular disease patients.

    No full text
    <p>The Western blots illustrate the composition of oligomeric complexes of APN in pericardial fluid and plasma samples from the same 7 individual patients, indicated by numbers 4–10. The contribution of high molecular APN species (> 200 kDa) to the total concentration of APN was calculated as a percentage as described in the methods section.</p

    Venous plasma and pericardial fluid concentrations of leptin (left), adipocyte fatty acid-binding protein (A-FABP, middle) and adiponectin (right) in cardiac and vascular disease patients (n = 36–37).

    No full text
    <p>Top, box plots illustrating median values, interquartile range and range of concentrations compared by Wilcoxon matched-pairs signed rank test. Bottom, double logarithmic plots by Pearson’s correlation illustrating the relationship between pericardial fluid concentrations and circulating levels of the adipokines.</p

    Adipokine Imbalance in the Pericardial Cavity of Cardiac and Vascular Disease Patients

    No full text
    <div><p>Aim</p><p>Obesity and especially hypertrophy of epicardial adipose tissue accelerate coronary atherogenesis. We aimed at comparing levels of inflammatory and atherogenic hormones from adipose tissue in the pericardial fluid and circulation of cardiovascular disease patients.</p><p>Methods and Results</p><p>Venous plasma (P) and pericardial fluid (PF) were obtained from elective cardiothoracic surgery patients (n = 37). Concentrations of leptin, adipocyte fatty acid-binding protein (A-FABP) and adiponectin (APN) were determined by enzyme-linked immunosorbent assays (ELISA). The median concentration of leptin in PF (4.3 (interquartile range: 2.8–9.1) μg/L) was comparable to that in P (5.9 (2.2–11) μg/L) and these were significantly correlated to most of the same patient characteristics. The concentration of A-FABP was markedly higher (73 (28–124) versus 8.4 (5.2–14) μg/L) and that of APN was markedly lower (2.8 (1.7–4.2) versus 13 (7.2–19) mg/L) in PF compared to P. APN in PF was unlike in P not significantly related to age, body mass index, plasma triglycerides or coronary artery disease. PF levels of APN, but not A-FABP, were related to the size of paracardial adipocytes. PF levels of APN and A-FABP were not related to the immunoreactivity of paracardial adipocytes for these proteins.</p><p>Conclusion</p><p>In cardiac and vascular disease patients, PF is enriched in A-FABP and poor in APN. This adipokine microenvironment is more likely determined by the heart than by the circulation or paracardial adipose tissue.</p></div
    corecore