22 research outputs found

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Fission fragment yields and total kinetic energy release in neutron-induced fission of235,238U,and239Pu

    No full text
    Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239

    Fission fragment yields and total kinetic energy release in neutron-induced fission of

    No full text
    Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239

    Density determination of the thermonuclear fuel region in inertial confinement fusion implosions

    Get PDF
    Understanding of the thermonuclear burn in an inertial confinement fusion implosion requires knowledge of the local deuterium–tritium (DT) fuel density. Neutron imaging of the core now provides this previously unavailable information. Two types of neutron images are required. The first is an image of the primary 14-MeV neutrons produced by the D + T fusion reaction. The second is an image of the 14-MeV neutrons that leave the implosion hot spot and are downscattered to lower energy by elastic and inelastic collisions in the fuel. These neutrons are measured by gating the detector to record the 6–12 MeV neutrons. Using the reconstructed primary image as a nonuniform source, a set of linear equations is derived that describes the contribution of each voxel of the DT fuel region to a pixel in the downscattered image. Using the measured intensity of the 14-MeV neutrons and downscattered images, the set of equations is solved for the density distribution in the fuel region. The method is validated against test problems and simulations of high-yield implosions. The calculated DT density distribution from one experiment is presented
    corecore