51 research outputs found

    Further Evidence of Neuroprotective Effects of Recombinant Human Erythropoietin and Growth Hormone in Hypoxic Brain Injury in Neonatal Mice

    Get PDF
    Experimental in vivo data have recently shown complementary neuroprotective actions of rhEPO and growth hormone (rhGH) in a neonatal murine model of hypoxic brain injury. Here, we hypothesized that rhGH and rhEPO mediate stabilization of the blood–brain barrier (BBB) and regenerative vascular effects in hypoxic injury to the developing brain. Using an established model of neonatal hypoxia, neonatal mice (P7) were treated i.p. with rhGH (4000 µg/kg) or rhEPO (5000 IU/kg) 0/12/24 h after hypoxic exposure. After a regeneration period of 48 h or 7 d, cerebral mRNA expression of Vegf-A, its receptors and co-receptors, and selected tight junction proteins were determined using qRT-PCR and ELISA. Vessel structures were assessed by Pecam-1 and occludin (Ocln) IHC. While Vegf-A expression increased significantly with rhGH treatment (p < 0.01), expression of the Vegfr and TEK receptor tyrosine kinase (Tie-2) system remained unchanged. RhEPO increased Vegf-A (p < 0.05) and Angpt-2 (p < 0.05) expression. While hypoxia reduced the mean vessel area in the parietal cortex compared to controls (p < 0.05), rhGH and rhEPO prevented this reduction after 48 h of regeneration. Hypoxia significantly reduced the Ocln+ fraction of cortical vascular endothelial cells. Ocln signal intensity increased in the cortex in response to rhGH (p < 0.05) and in the cortex and hippocampus in response to rhEPO (p < 0.05). Our data indicate that rhGH and rhEPO have protective effects on hypoxia-induced BBB disruption and regenerative vascular effects during the post-hypoxic period in the developing brain

    Fiber rich food suppressed airway inflammation, GATA3 + Th2 cells, and FcεRIα+ eosinophils in asthma

    Get PDF
    BackgroundAllergic Asthma is a disease presenting various endotypes and no current therapies act curative but alleviate disease symptoms. Dietary interventions are gaining increasing importance in regulating immune responses. Furthermore, short chain fatty acids (SFCA), as the main products of dietary fiber’s fermentation by the gut bacteria, ameliorate the pathogenesis and disease burden of different illnesses including asthma. Nevertheless, the connection and crosstalk between the gut and lung is poorly understood.ObjectiveIn this work, the role of high fiber diet on the development of allergic asthma at baseline and after exacerbation of disease induced by respiratory viruses was investigated.MethodsHereby, SCFA in serum of asthmatic and non-asthmatic pre-school children before and after airway disease symptoms were analyzed. Moreover, the effect of high fiber diet in vivo in a murine model of house dust mite extract (HDM) induced allergic asthma and in the end in isolated lung and spleen cells infected ex vivo with Rhinovirus was analyzed.ResultsIn this study, a decrease of the SCFA 3-Hydroxybutyric acid in serum of asthmatic children after symptomatic episodes at convalescent visit as compared to asthmatic and control children at baseline visit was observed. In experimental asthma, in mice fed with high fiber diet, a reduced lung GATA3 + Th2 type mediated inflammation, mucus production and collagen deposition and expression of Fc epsilon receptor Ia (FcεRIa) in eosinophils was observed. By contrast, the CD8+ memory effector T cells were induced in the lungs of asthmatic mice fed with high fiber diet. Then, total lung cells from these asthmatic mice fed with either standard food or with fiber rich food were infected with RV ex vivo. Here, RV1b mRNA was found significantly reduced in the lung cells derived from fiber rich food fed mice as compared to those derived from standard food fed asthmatic mice. Looking for the mechanism, an increase in CD8+ T cells in RV infected spleen cells derived from fiber rich fed asthmatic mice, was observed.ConclusionConvalescent preschool asthmatic children after a symptomatic episode have less serum ß-Hydroxybutyric acid as compared to control and asthmatic children at baseline visit. Fiber rich diet associated with anti-inflammatory effects as well as anti-allergic effects by decreasing Type 2 and IgE mediated immune responses and inducing CD8+ memory effector T cells in a murine model of allergic asthma. Finally, ex vivo infection with Rhinovirus (RV) of total lung cells from asthmatic mice fed with fiber rich food led to a decreased RV load as compared to mice fed with standard food. Moreover, spleen cells derived from asthmatic mice fed with fiber rich food induced CD8+ T cells after ex vivo infection with RV.Clinical implicationsDietary interventions with increased content in natural fibers like pectins would ameliorate asthma exacerbations. Moreover, respiratory infection in asthma downregulated SCFA in the gut contributing to asthma exacerbations

    An Immunoregulatory Role of Interleukin-3 in Allergic Asthma

    Get PDF
    Background Allergic asthma is a chronic airway inflammatory disease associated with airway mucus hyper-production. ILC2 cells, which express the Th2 transcription factor GATA3, have been associated with allergic asthma. The cytokine IL-3 is known to support eosinophil, basophil and mucosal mast cell differentiation and survival; however, its role on T regulatory cells as well as on lung ILC2 and in pediatric asthma needs further investigation. Objectives To investigate the role of IL-3 in preschool children and to explore its therapeutic role in experimental asthma. Methods In a cohort of preschool children with and without asthma, we analyzed the secretion of IL-3 in nasopharyngeal fluid (NPF) and IL-3 receptor (R) alpha chain mRNA expression in peripheral blood mononuclear cells (PBMCs). In a murine model of allergic asthma, we analyzed the phenotype of wild-type untreated and rIL-3 intranasally treated asthmatic mice. Results IL-3 was found downregulated in the nasopharyngeal fluid of children with partially controlled asthma, as compared to control children. Moreover, IL-3 was found induced in phytohemagglutinin (PHA)-stimulated PBMCs from children with asthma and treated with steroids. Finally, IL-3 in NPF directly correlated with the anti-inflammatory molecule sST2 in steroid-treated asthmatic children. Intranasal rIL-3 delivery in vivo during the challenge phase decreased airway mucus production and inflammatory eosinophils. Moreover, rIL-3 given during the challenge phase, reduced lung ST2intGATA3+ILC2, accompanied by an induction of T regulatory cells in the airways. Conclusions IL-3 was found associated with steroid-resolved asthma. Moreover, treatment with rIL-3 resulted in amelioration of airway eosinophilia and mucus production, two main pathophysiological conditions associated with asthma in a murine model of allergic asthma. Thus, rIL-3 opens new strategies for immunotherapy of this disease

    Prognostic impact of molecular muscle-invasive bladder cancer subtyping approaches and correlations with variant histology in a population-based mono-institutional cystectomy cohort

    Get PDF
    Purpose Recently discovered molecular classifications for urothelial bladder cancer appeared to be promising prognostic and predictive biomarkers. The present study was conducted to evaluate the prognostic impact of molecular subtypes assessed by two different methodologies (gene and protein expression), to compare these two approaches and to correlate molecular with histological subtypes in a consecutively collected, mono-institutional muscle-invasive bladder cancer (MIBC) cohort. Methods 193 MIBC were pathologically re-evaluated and molecular subtypes were assessed on mRNA (NanoString technology, modified 21-gene-containing MDACC approach) and protein levels (immuno-histochemical [IHC] analysis of CK5, CK14, CD44, CK20, GATA3 and FOXA1). Descriptive statistical methods and uni-/multi-variable survival models were employed to analyze derived data. Results Neither gene expression nor protein-based subtyping showed significant associations with disease-specific (DSS) or recurrence-free survival (RFS). Agreement between mRNA (reference) and protein-based subtyping amounted 68.6% for basal, 76.1% for luminal and 50.0% for double-negative tumors. Histological subtypes associated with RFS in uni-variable (P = 0.03), but not in multivariable survival analyses. Tumors with variant histology predominantly showed luminal subtypes (gene expression subtyping: 36/55 cases, 65.5%; protein subtyping: 44/55 cases, 80.0%). Squamous differentiation significantly associated with basal subtypes (gene expression subtyping: 44/45 squamous cases, 97.8%; protein subtyping: 36/45 cases, 80.0%). Conclusion In our consecutive cystectomy cohort, neither gene, protein expression-based subtyping, nor histological subtypes associated with DSS or RFS in multi-variably adjusted survival analyses. Application of a limited IHC subtyping marker panel showed high concordance of 83.9% with gene expression-based subtyping, thus underlining the utility for subtyping in pathological routine diagnostics. In addition, histological MIBC subtypes are strong indicators for intrinsic subtypes

    Contribution of serum lipids and cholesterol cellular metabolism in lung cancer development and progression

    Get PDF
    AbstractNeoplasms of the lungs are the leading cause of cancer incidence and mortality worldwide. Although immunotherapy has increased the overall survival of patients with lung cancer, there is the need to improve this treatment. At this regard, blood lipid levels are thought to be linked to cancer risk and thus a preventive intervention through regulation of the nutrition of patients with lung cancer is gaining much attention. In this study, we therefore asked about the contribution of serum lipids and cholesterol cellular metabolism in lung cancer development and progression. We measured different serum lipids and analyzed cholesterol synthesis enzymes 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) and acetyl-coenzyme A cholesterol acetyltransferase 1 (ACAT1) as well as the cholesterol cellular export protein ATP-binding cassette (ABC) A-1 mRNA by quantitative PCR (qPCR) in the control and tumoral regions of post-surgery lung tissues to analyze the accumulation of cholesterol in cancer cells in a cohort of patients with lung adenocarcinoma (LUAD). We found that triglycerides in serum directly correlated with the body mass index (BMI) in patients with LUAD. By contrast, we found that high-density lipoprotein (HDL) cholesterol inversely correlated with the BMI, C-reactive protein (CRP) and overall survival and total cholesterol inversely correlated with the tumor diameter, serum CRP and overall survival in these LUAD patients. Functionally, the role of cholesterol is indispensable for the growth and development of normal animal cells where it is tightly regulated. Excess of cellular cholesterol regulated by HMGCR is converted to cholesteryl esters by the enzyme ACAT1 and exported extracellularly by the cholesterol transporter ABCA1. Here we found HMGCR and ACAT1 upregulated and ABCA1 downregulated in the lung’s tumoral region of our LUAD cohort, indicating cholesterol dysregulated cellular export in lung tumor cells.</jats:p

    ATF2 loss promotes 5-FU resistance in colon cancer cells via activation of the ATR-Chk1 damage response pathway

    Get PDF
    Abstract Background The role of ATF2 in colon cancer (CC) is controversial. Recently, we reported that low ATF2 expression is characteristic of highly invasive tumors, suggesting that ATF2 might also be involved in therapy resistance. 5-Fluorouracil (5-FU) is the best-known chemotherapeutic drug for CC, but drug resistance affects its curative effect. To date, the role of ATF2 in the 5-FU response remains elusive. Methods/Results For our study, we had available HCT116 cells (wild-type p53) and HT29 colon tumor cells (mutant p53) and their corresponding CRISPR‒Cas9-generated ATF2-KO clones. We observed that loss of ATF2 triggered dose- and time-dependent 5-FU resistance in HCT116 cells by activating the DNA damage response (DDR) pathway with high p-ATRThr1989 and p-Chk1Ser317 levels accompanied by an increase in the DNA damage marker γ-H2AX in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. Chk1 inhibitor studies causally displayed the link between DDR and drug resistance. There were contradictory findings in HT29 ATF2-KO cells upon 5-FU exposure with low p-Chk1Ser317 levels, strong apoptosis induction, but no effects on DNA damage. In ATF2-silenced HCT116 p53−/− cells, 5-FU did not activate the DDR pathway. Co-immunoprecipitation and proximity ligation assays revealed that upon 5-FU treatment, ATF2 binds to ATR to prevent Chk1 phosphorylation. Indeed, in silico modelling showed reduced ATR-Chk1 binding when ATF2 was docked into the complex. Conclusions We demonstrated a novel ATF2 scaffold function involved in the DDR pathway. ATF2-negative cells are highly resistant due to effective ATR/Chk1 DNA damage repair. Mutant p53 seems to overwrite the tumor suppressor function of ATF2. </jats:sec

    TIGIT Expression on Intratumoral Lymphocytes Correlates with Improved Prognosis in Oral Squamous Cell Carcinoma

    Get PDF
    Background: T-cell immunoglobulin and ITIM domain (TIGIT) is a potential immunotherapeutic target in a variety of malignant entities, and antibody-based treatments are currently under investigation in clinical trials. While promising results were observed in patients with lung cancer, the role of TIGIT in oral squamous cell carcinoma (OSCC) as a biomarker as well as a therapeutic target remains elusive. Therefore, we evaluated the role of TIGIT as a prognostic factor in OSCC. Methods: Here, we describe the results of a retrospective tissue microarray (TMA) OSCC cohort. Using immunohistochemistry, TIGIT expression was correlated with overall and recurrence-free survival (OAS and RFS, respectively). Additionally, in silico analysis was performed based on the TCGA Head and Neck Squamous Cell Carcinoma (HNSCC) cohort in order to correlate patients’ survival with TIGIT and CD274 (encoding for PD-L1) gene expression levels. Results: Database analysis revealed a beneficial outcome in OAS for tumor patients with high intraepithelial CD3-TIGIT-expression (n = 327). Hereby, OAS was 53.9 months vs. 30.1 months for patients with lower TIGIT gene expression levels (p = 0.033). In our retrospective OSCC-TMA cohort, elevated TIGIT levels on CD3+ cells correlated significantly with improved OAS (p = 0.025) as well as distant RFS (p = 0.026). Conclusions: This study introduces TIGIT as a novel prognostic factor in OSCC, indicating the improved outcome of OSCC patients relative to their increased TIGIT expression. TIGIT might provide therapeutic implications for future immunotherapy in advanced-stage OSCC patients

    High Stroma T-Cell Infiltration is Associated with Better Survival in Stage pT1 Bladder Cancer

    Get PDF
    Stage pT1 bladder cancer (BC) shows highly diverse outcomes. Predictive markers are required to stratify patients for personalized treatment. The present study aimed to validate immune response quantification as a prognostic marker. Patients with pT1 BC (n = 167) treated by transurethral resection of the bladder (TURB) were enrolled. Formaldehyde-fixed paraffin-embedded material was stained for CD3 and CD8. Corresponding T cells were counted in three regions with the highest immune response. Numbers of tertiary lymphoid structures (TLS) and lymphocyte aggregates (LA) were quantified. High CD3+ stroma T-cell infiltration was associated with improved survival (p = 0.045), especially in the G3 subgroup (p = 0.01). Cluster with higher immune response showed less recurrence (p = 0.034) and favorable overall survival (OS) (p = 0.019). In contrast, higher CD3+ and CD8+ tumor T-cell infiltration seemed to have a negative impact on prognosis. TLS and LA were more frequently observed in G3 tumors, indicating an increased anti-tumoral immune response. We proved the role of immune cell infiltration and showed that higher infiltration numbers of CD3+ (not CD8+) lymphocytes in the stroma are associated with favorable outcome. Immune cell quantification could be used as a marker to help stratify patients’ risk and therefore, to optimize patients’ management and follow-up examination as well as possible therapies

    Glucose-Restricted Diet Regulates the Tumor Immune Microenvironment and Prevents Tumor Growth in Lung Adenocarcinoma

    Get PDF
    Background Lung cancer is the second common cancer type in western countries and has a high mortality. During the development and progression of the tumor, the nutrients in its environment play a central role. The tumor cells depend crucially on glucose metabolism and uptake. Tumor cell metabolism is dominated by the Warburg effect, where tumor cells produce large amounts of lactate from pyruvate under aerobic conditions. We thus reasoned that, reducing carbohydrates in the diet might support anti-tumoral effects of current immunotherapy and additionally target tumor immune escape. Objectives The link between reducing carbohydrates to improve current immunotherapy is not clear. We thus aimed at analyzing the effects of different glucose levels on the tumor development, progression and the anti-tumoral immune response. Methods We correlated the clinical parameters of our LUAD cohort with different metabolic markers. Additionally, we performed cell culture experiments with A549 tumor cell line under different glucose levels. Lastly, we investigated the effect of low and high carbohydrate diet in an experimental murine model of lung cancer on the tumor progression and different immune subsets. Results Here we found a positive correlation between the body mass index (BMI), blood glucose levels, reduced overall survival (OS) and the expression of Insulin-like growth factor-1 receptor (IGF1R) in the lung tumoral region of patients with lung adenocarcinoma (LUAD). Furthermore, increasing extracellular glucose induced IGF1R expression in A549 LUAD cells. Functional studies in a murine model of LUAD demonstrated that, glucose restricted diet resulted in decreased tumor load in vivo. This finding was associated with increased presence of lung infiltrating cytotoxic CD8+ T effector memory (TEM), tissue resident memory T (TRM) and natural killer cells as well as reduced IGFR mRNA expression, suggesting that glucose restriction regulates lung immunity in the tumor microenvironment. Conclusions These results indicate that, glucose restricted diet improves lung immune responses of the host and suppresses tumor growth in experimental lung adenocarcinoma. As glucose levels in LUAD patients were negatively correlated to postoperative survival rates, glucose-restricted diet emerges as therapeutic avenue for patients with LUAD

    The Chorioallantoic Membrane Xenograft Assay as a Reliable Model for Investigating the Biology of Breast Cancer

    Get PDF
    Simple Summary The chorioallantoic membrane (CAM) is a highly vascularized membrane found in avian eggs. Tumor cell lines can be grown on the CAM, which allows for the further analyses of the tumor grafts afterwards. We investigated the biological and growth characteristics of two breast cancer cell lines that resemble two biologically different breast cancer subgroups. Known biological features of the more aggressive breast cancer cell line were clearly confirmed in vitro and in the CAM model. Furthermore, the tissue-based pathological variables assessed in the CAM model were similar to those of the mouse xenografts and human patient tumor tissue. We suggest this in vivo model to be a reliable alternative for breast cancer research to reduce murine animal experiments. Abstract The chorioallantoic membrane (CAM) assay is an alternative in vivo model that allows for minimally invasive research of cancer biology. Using the CAM assay, we investigated phenotypical and functional characteristics (tumor grade, mitosis rate, tumor budding, hormone receptor (HR) and HER2 status, Ki-67 proliferation index) of two breast cancer cell lines, MCF-7 and MDA-MB-231, which resemble the HR+ (luminal) and triple-negative breast cancer (TNBC) subgroups, respectively. Moreover, the CAM results were directly compared with murine MCF-7- and MDA-MB-231-derived xenografts and human patient TNBC tissue. Known phenotypical and biological features of the aggressive triple-negative breast cancer cell line (MDA-MB-231) were confirmed in the CAM assay, and mouse xenografts. Furthermore, the histomorphological and immunohistochemical variables assessed in the CAM model were similar to those in human patient tumor tissue. Given the confirmation of the classical biological and growth properties of breast cancer cell lines in the CAM model, we suggest this in vivo model to be a reliable alternative test system for breast cancer research to reduce murine animal experiments
    corecore