2,545 research outputs found

    Mathematical modeling of tumor therapy with oncolytic viruses: Effects of parametric heterogeneity on cell dynamics

    Get PDF
    One of the mechanisms that ensure cancer robustness is tumor heterogeneity, and its effects on tumor cells dynamics have to be taken into account when studying cancer progression. There is no unifying theoretical framework in mathematical modeling of carcinogenesis that would account for parametric heterogeneity. Here we formulate a modeling approach that naturally takes stock of inherent cancer cell heterogeneity and illustrate it with a model of interaction between a tumor and an oncolytic virus. We show that several phenomena that are absent in homogeneous models, such as cancer recurrence, tumor dormancy, an others, appear in heterogeneous setting. We also demonstrate that, within the applied modeling framework, to overcome the adverse effect of tumor cell heterogeneity on cancer progression, a heterogeneous population of an oncolytic virus must be used. Heterogeneity in parameters of the model, such as tumor cell susceptibility to virus infection and virus replication rate, can lead to complex, time-dependent behaviors of the tumor. Thus, irregular, quasi-chaotic behavior of the tumor-virus system can be caused not only by random perturbations but also by the heterogeneity of the tumor and the virus. The modeling approach described here reveals the importance of tumor cell and virus heterogeneity for the outcome of cancer therapy. It should be straightforward to apply these techniques to mathematical modeling of other types of anticancer therapy.Comment: 45 pages, 6 figures; submitted to Biology Direc

    Biological applications of the theory of birth-and-death processes

    Full text link
    In this review, we discuss the applications of the theory of birth-and-death processes to problems in biology, primarily, those of evolutionary genomics. The mathematical principles of the theory of these processes are briefly described. Birth-and-death processes, with some straightforward additions such as innovation, are a simple, natural formal framework for modeling a vast variety of biological processes such as population dynamics, speciation, genome evolution, including growth of paralogous gene families and horizontal gene transfer, and somatic evolution of cancers. We further describe how empirical data, e.g., distributions of paralogous gene family size, can be used to choose the model that best reflects the actual course of evolution among different versions of birth-death-and-innovation models. It is concluded that birth-and-death processes, thanks to their mathematical transparency, flexibility and relevance to fundamental biological process, are going to be an indispensable mathematical tool for the burgeoning field of systems biology.Comment: 29 pages, 4 figures; submitted to "Briefings in Bioinformatics

    Development Trends in the Global Payment Card Market

    Get PDF

    Macroscopic Pure State of Light Free of Polarization Noise

    Full text link
    The preparation of completely non-polarized light is seemingly easy: an everyday example is sunlight. The task is much more difficult if light has to be in a pure quantum state, as required by most quantum-technology applications. The pure quantum states of light obtained so far are either polarized or, in rare cases, manifest hidden polarization: even if their intensities are invariant to polarization transformations, higher-order moments are not. We experimentally demonstrate the preparation of the macroscopic singlet Bell state, which is pure, completely non-polarized, and has no polarization noise. Simultaneous fluctuation suppression in three Stokes observables below the shot-noise limit is demonstrated, opening perspectives for noiseless polarization measurements. The state is shown to be invariant to polarization transformations. This robust highly entangled isotropic state promises to fuel important applications in photonic quantum technologies.Comment: 4 pages, 2 figures, 1 tabl
    • …
    corecore