228 research outputs found

    Re-Os Systematics in the Layered Rocks and Cu-Ni-PGE Sulfide Ores from the Dovyren Intrusive Complex in Southern Siberia, Russia: Implications for the Original Mantle Source and the Effects of Two-Stage Crustal Contamination

    No full text
    The Dovyren Intrusive Complex (Northern Baikal region, 728 ± 3 Ma) includes the dunite–troctolite–gabbronorite Yoko–Dovyren massif (YDM) associated with a sequence of underlying mafic-to-ultramafic sills, locally demonstrating interbedding relations with the most primitive rocks of the pluton. These sills and apophyses contain sulfide mineralization ranging from globular to net-textured and massive ores. Major types of the YDM cumulates and sulfide mineralization were examined for their PGE contents and Re-Os isotopic systematics. The ten analyzed samples included chilled and basal rocks, poorly mineralized troctolite, PGE-rich anorthosite, as well as three samples from a thick ore-bearing apophysis DV10 connected with the YDM. These samples yielded a Re-Os isochron with an age of 759 ± 36 Ma and an initial 187Os/188Os of 0.1309 ± 0.0026 (MSWD = 110), which is in consistent with the previously reported U–Pb zircon age. It is shown that being recalculated to γOs(t) at t = 728 Ma, these isotopic compositions demonstrate three clusters regarding the relationship between γOs(t) and 187Re/188Os: (i) the chilled gabbronorite (YDM) and subcontact olivine gabbronorite (DV10) yielded the most radiogenic values of γOs(t) 10.5 and 10.0 among basal ultramafics, (ii) plagiodunite, troctolite, and sulfide ores showed lower radiogenic compositions, with γOs(t) ranging from 7.3 to 8.7, (iii) olivine gabbronorite, plagioperidotite, and one sample of PGE-rich anorthosite yield very primitive γOs(t) in the range 4.5 to 5.6 (on average 5.2 ± 0.6). The lowest values of γOs(t) for the least fractionated rocks of the YDM suggest a primitive mantle source, formed from a partly contaminated Neoarchean protolith, which is considered to be anomalous in Upper Riphean due to very low εNd(t) of −16 for the most primitive Dovyren magma (Fo88-parent). The highest values of γOs(t) and relative enrichment in the 34S isotope in the chilled gabbronorite (YDM) and subcontact olivine gabbronorite (DV10) evidence that their primitive to evolved magmatic precursors could be affected by a metamorphic fluid enriched in radiogenic 187Os, originating in the exocontact halo due to the thermal decomposition of pyrite from the dehydrated country rocks. This is consistent with the second-stage contamination of the Dovyren magma by the hosting crustal rocks (probably of 10 wt% shists), generating more evolved Fo86-parent magma with higher εNd(t) of −14

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    At particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) [1]. The vacuum is not transparent to the partons and induces gluon radiation and quark pair production in a process that can be described as a parton shower [2]. Studying the pattern of the parton shower is one of the key experimental tools in understanding the properties of QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m and energy E, within a cone of angular size m/E around the emitter [3]. A direct observation of the dead-cone effect in QCD has not been possible until now, due to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible bound hadronic states. Here we show the first direct observation of the QCD dead-cone by using new iterative declustering techniques [4, 5] to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD, which is derived more generally from its origin as a gauge quantum field theory. Furthermore, the measurement of a dead-cone angle constitutes the first direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron.In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQm_{\rm{Q}} and energy EE, within a cone of angular size mQm_{\rm{Q}}/EE around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics

    Investigation of K+K− interactions via femtoscopy in Pb-Pb collisions at √sNN = 2.76 TeV at the CERN Large Hadron Collider

    No full text
    Femtoscopic correlations of non-identical charged kaons (K+K−) are studied in Pb−Pb collisions at a center-of-mass energy per nucleon−nucleon collision sNN−−−√=2.76 TeV by ALICE at the LHC. One-dimensional K+K− correlation functions are analyzed in three centrality classes and eight intervals of particle-pair transverse momentum. The Lednický and Luboshitz interaction model used in the K+K− analysis includes the final-state Coulomb interactions between kaons and the final-state interaction through a0(980) and f0(980) resonances. The mass of f0(980) and coupling were extracted from the fit to K+K− correlation functions using the femtoscopic technique for the first time. The measured mass and width of the f0(980) resonance are consistent with other published measurements. The height of the ϕ(1020) meson peak present in the K+K− correlation function rapidly decreases with increasing source radius, qualitatively in agreement with an inverse volume dependence. A phenomenological fit to this trend suggests that the ϕ(1020) meson yield is dominated by particles produced directly from the hadronization of the system. The small fraction subsequently produced by FSI could not be precisely quantified with data presented in this paper and will be assessed in future work
    corecore