7 research outputs found

    Saccharides as Prospective Immobilizers of Nucleic Acids for Room-Temperature Structural EPR Studies

    No full text
    Pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for structural studies of biomolecules and their complexes. This method, whose applicability has been recently extended to room temperatures, requires immobilization of the studied biosystem to prevent averaging of dipolar couplings; at the same time, the modification of native conformations by immobilization must be avoided. In this work, we provide first demonstration of room-temperature EPR distance measurements in nucleic acids using saccharides trehalose, sucrose, and glucose as immobilizing media. We propose an approach that keeps structural conformation and unity of immobilized double-stranded DNA. Remarkably, room-temperature electron spin dephasing time of triarylmethyl-labeled DNA in trehalose is noticeably longer compared to previously used immobilizers, thus providing a broader range of available distances. Therefore, saccharides, and especially trehalose, can be efficiently used as immobilizers of nucleic acids, mimicking native conditions and allowing wide range of structural EPR studies at room temperatures

    Triarylmethyl Labels: Toward Improving the Accuracy of EPR Nanoscale Distance Measurements in DNAs

    No full text
    Triarylmethyl (trityl, TAM) based spin labels represent a promising alternative to nitroxides for EPR distance measurements in biomolecules. Herewith, we report synthesis and comparative study of series of model DNA duplexes, 5′-spin-labeled with TAMs and nitroxides. We have found that the accuracy (width) of distance distributions obtained by double electron–electron resonance (DEER/PELDOR) strongly depends on the type of radical. Replacement of both nitroxides by TAMs in the same spin-labeled duplex allows narrowing of the distance distributions by a factor of 3. Replacement of one nitroxide by TAM (orthogonal labeling) leads to a less pronounced narrowing but at the same time gains sensitivity in DEER experiment due to efficient pumping on the narrow EPR line of TAM. Distance distributions in nitroxide/nitroxide pairs are influenced by the structure of the linker: the use of a short amine-based linker improves the accuracy by a factor of 2. At the same time, a negligible dependence on the linker length is found for the distribution width in TAM/TAM pairs. Molecular dynamics calculations indicate greater conformational disorder of nitroxide labels compared to TAM ones, thus rationalizing the experimentally observed trends. Thereby, we conclude that double spin-labeling using TAMs allows obtaining narrower spin–spin distance distributions and potentially more precise distances between labeling sites compared to traditional nitroxides

    Physiological-Temperature Distance Measurement in Nucleic Acid using Triarylmethyl-Based Spin Labels and Pulsed Dipolar EPR Spectroscopy

    No full text
    Resolving the nanometer-scale structure of biomolecules in natural conditions still remains a challenging task. We report the first distance measurement in nucleic acid at physiological temperature using electron paramagnetic resonance (EPR). The model 10-mer DNA duplex has been labeled with reactive forms of triarylmethyl radicals and then immobilized on a sorbent in water solution and investigated by double quantum coherence EPR. We succeeded in development of optimal triarylmethyl-based labels, approach for site-directed spin labeling and efficient immobilization procedure that, working together, allowed us to measure as long distances as ∼4.6 nm with high accuracy at 310 K (37 °C)

    A Versatile Approach to Attachment of Triarylmethyl Labels to DNA for Nanoscale Structural EPR Studies at Physiological Temperatures

    No full text
    Triarylmethyl (trityl, TAM) radicals are a promising class of spin labels for nanometer-scale distance measurements in biomolecules at physiological temperatures. However, to date, existing approaches to site-directed TAM labeling of DNA have been limited to label attachment at the termini of oligonucleotides, thus hindering a majority of demanded applications. Herein, we report a new versatile strategy for TAM attachment at arbitrary sites of nucleic acids. It utilizes an achiral non-nucleoside phosphoramidite monomer for automated solid-phase synthesis of oligonucleotides, which are then postsynthetically functionalized with TAM. We demonstrate a synthesis of a set of oligonucleotide complexes that are TAM-labeled at internal or terminal sites, as well as the possibility of measuring interspin distances up to ∼5–6 nm at 298 K using double quantum coherence electron paramagnetic resonance (EPR). Implementation of the developed approach strongly broadens the scope of nucleic acids and nucleoprotein complexes available for nanoscale structural EPR studies at room temperatures
    corecore