5 research outputs found

    Star-shaped D–π–A oligothiophenes with a tris(2-methoxyphenyl)amine core and alkyldicyanovinyl groups: synthesis and physical and photovoltaic properties

    No full text
    Synthesis of a series of star-shaped oligomers having a novel electron donating tris(2-methoxyphenyl)amine (m-TPA) core, which is linked through a bithiophene or terthiophene π-bridge with electron-deficient alkyldicyanovinyl (alkyl-DCV) groups, is described. A comprehensive study of the oligomers revealed significant dependence of their physical properties, including absorption, molecular frontier energy levels, crystal packing, and melting and glass transition temperatures, upon the chemical structure. A comparison of their photophysical properties to the nearest analog having the common dicyanovinyl (DCV) groups demonstrated a number of benefits to use alkyl-DCV units for the design of donor–acceptor small molecules: higher solubility, increased electrochemical stability, better photovoltaic performance, and possibility to control the relative physical and photovoltaic properties by a simple adjustment of alkyl and π-bridge lengths. Modification of the well-known triphenylamine (TPA) core in the star-shaped oligomers by methoxy groups increases not only solubility, but also crystallinity of the oligomers, whereas their photovoltaic performance stays on a similar level as their analogs with a TPA core. The study demonstrates that these design strategies represent interesting and simple tools for the effective modulation of properties of star-shaped molecules

    Thioether-Containing Zirconium(Alkoxy)Siloxanes: Synthesis and Study of Dielectric and Mechanical Properties of Silica-Filled Polydimethylsiloxane Compositions Cured by Them

    No full text
    A number of thioether-containing zirconium siloxanes, differing in their composition and metal atom shielding degree with a siloxy substituent, were synthesized and characterized. Synthesis of such compounds made it possible to evaluate the effect of sulfur atoms’ presence in the cured compositions on their dielectric properties, as well as to evaluate their curing ability and influence on mechanical characteristics compared to the sulfur-free analogs obtained earlier. Studying a wide range of compositions differing in their content and ratio of metallosiloxane and silica components revealed that such systems are still typical dielectrics. At the same time, the introduction of thioether groups can provide increased dielectric constant and conductivity in comparison with previously obtained sulfur-free similar compositions in the 2 Hz frequency range (dielectric constant up to ~10–30 at frequency range 1–10 Hz). As before, the dielectric parameters increase is directly determined by the silica component proportion in the cured material. It is also shown that varying sulfur-containing zirconium siloxanes structure and functionality and its combination with previously obtained sulfur–free analogs, along with varying the functionality and rubber chain length, can be an effective tool for changing the dielectric and mechanical material parameters in a wide range (tensile strength 0.5–7 Mpa, elastic deformation 2–300%), which determine the prospects for the use of such cured systems as dielectric elastomers for various purposes
    corecore