2 research outputs found

    Pressure Effect Studies on the Spin Transition of Microporous 3D Polymer [Fe(pz)Pt(CN)<sub>4</sub>]

    No full text
    Pressure effects on the spin transition of the three-dimensional (3D) porous coordination polymer {Fe­(pz)­[Pt­(CN)<sub>4</sub>]} have been investigated in the interval 10<sup>5</sup> Pa–1.0 GPa through variable-temperature (10–320 K) magnetic susceptibility measurements and spectroscopic studies in the visible region at room temperature. These studies have disclosed a different behavior of the compound under pressure. In the magnetic experiments, a temperature independent paramagnetic behavior has been observed under 0.4 GPa. In contrast, at room temperature and at 0.8 GPa, a complete HS-to-LS transition has been evidenced. The differences in the magnetic behavior are strongly related with the porous structure of the compound and its capability to adsorb the oil used as pressure transmission media in the magnetic experiments

    The Multifunctionality of Lanthanum–Strontium Cobaltite Nanopowder: High-Pressure Magnetic Studies and Excellent Electrocatalytic Properties for OER

    No full text
    Simultaneous study of magnetic and electrocatalytic properties of cobaltites under extreme conditions expands the understanding of physical and chemical processes proceeding in them with the possibility of their further practical application. Therefore, La0.6Sr0.4CoO3 (LSCO) nanopowders were synthesized at different annealing temperatures tann = 850–900 °C, and their multifunctional properties were studied comprehensively. As tann increases, the rhombohedral perovskite structure of the LSCO becomes more single-phase, whereas the average particle size and dispersion grow. Co3+ and Co4+ are the major components. It has been found that LSCO-900 shows two main Curie temperatures, TC1 and TC2, associated with a particle size distribution. As pressure P increases, average ⟨TC1⟩ and ⟨TC2⟩ increase from 253 and 175 K under ambient pressure to 268 and 180 K under P = 0.8 GPa, respectively. The increment of ⟨dTC/dP⟩ for the smaller and bigger particles is sufficiently high and equals 10 and 13 K/GPa, respectively. The magnetocaloric effect in the LSCO-900 nanopowder demonstrates an extremely wide peak δTfwhm > 50 K that can be used as one of the composite components, expanding its working temperature window. Moreover, all LSCO samples showed excellent electrocatalytic performance for the oxygen evolution reaction (OER) process (overpotentials of only 265–285 mV at a current density of 10 mA cm–2) with minimal η10 for LSCO-900. Based on the experimental data, it was concluded that the formation of a dense amorphous layer on the surface of the particles ensures high stability as a catalyst (at least 24 h) during electrolysis in 1 M KOH electrolyte
    corecore