7 research outputs found

    A Two-Phase Power Allocation Scheme for CRNs Employing NOMA

    Full text link
    In this paper, we consider the power allocation (PA) problem in cognitive radio networks (CRNs) employing nonorthogonal multiple access (NOMA) technique. Specifically, we aim to maximize the number of admitted secondary users (SUs) and their throughput, without violating the interference tolerance threshold of the primary users (PUs). This problem is divided into a two-phase PA process: a) maximizing the number of admitted SUs; b) maximizing the minimum throughput among the admitted SUs. To address the first phase, we apply a sequential and iterative PA algorithm, which fully exploits the characteristics of the NOMA-based system. Following this, the second phase is shown to be quasiconvex and is optimally solved via the bisection method. Furthermore, we prove the existence of a unique solution for the second phase and propose another PA algorithm, which is also optimal and significantly reduces the complexity in contrast with the bisection method. Simulation results verify the effectiveness of the proposed two-phase PA scheme

    Capacity Comparison between MIMO-NOMA and MIMO-OMA with Multiple Users in a Cluster

    Full text link
    In this paper, the performance of multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) is investigated when multiple users are grouped into a cluster. The superiority of MIMO-NOMA over MIMO orthogonal multiple access (MIMO-OMA) in terms of both sum channel capacity and ergodic sum capacity is proved analytically. Furthermore, it is demonstrated that the more users are admitted to a cluster, the lower is the achieved sum rate, which illustrates the tradeoff between the sum rate and maximum number of admitted users. On this basis, a user admission scheme is proposed, which is optimal in terms of both sum rate and number of admitted users when the signal-to-interference-plus-noise ratio thresholds of the users are equal. When these thresholds are different, the proposed scheme still achieves good performance in balancing both criteria. Moreover, under certain conditions,it maximizes the number of admitted users. In addition, the complexity of the proposed scheme is linear to the number of users per cluster. Simulation results verify the superiority of MIMO-NOMA over MIMO-OMA in terms of both sum rate and user fairness, as well as the effectiveness of the proposed user admission scheme.Comment: accepted IEEE Journal on Selected Topics in Communications, June 2017, Keywords: Non-orthogonal multiple access (NOMA), multiple-input multiple-output (MIMO), channel capacity, sum rate, fairness, user admission, power allocatio

    Bandwidth allocation in cooperative wireless networks: Buffer load analysis and fairness evaluation.

    Get PDF
    In modern cooperative wireless networks, the resource allocation is an issue of major significance. The cooperation of source and relay nodes in wireless networks towards improved performance and robustness requires the application of an efficient bandwidth sharing policy. Moreover, user requirements for multimedia content over wireless links necessitate the support of advanced Quality of Service (QoS) features. In this paper, a novel bandwidth allocation technique for cooperative wireless networks is proposed, which is able to satisfy the increased QoS requirements of network users taking into account both traffic priority and packet buffer load. The performance of the proposed scheme is examined by analyzing the impact of buffer load on bandwidth allocation. Moreover, fairness performance in resource sharing is also studied. The results obtained for the cooperative network scenario employed, are validated by simulations. Evidently, the improved performance achieved by the proposed technique indicates that it can be employed for efficient traffic differentiation. The flexible design architecture of the proposed technique indicates its capability to be integrated into Medium Access Control (MAC) protocols for cooperative wireless networks

    Capacity Comparison Between MIMO-NOMA and MIMO-OMA With Multiple Users in a Cluster

    No full text
    corecore